Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics
-
Neuromodulation shows increasing promise in the treatment of psychiatric disorders, particularly obsessive-compulsive disorder (OCD). Development of tools and techniques including deep brain stimulation, transcranial magnetic stimulation, and electroconvulsive therapy may yield additional options for patients who fail to respond to standard treatments. This article reviews the motivation for and use of these treatments in OCD. ⋯ Neuroimaging findings and historical treatments that led to the use of neuromodulation for OCD are presented. We then present evidence from neuromodulation studies using deep brain stimulation, electroconvulsive therapy, and transcranial magnetic stimulation, with targets including nucleus accumbens, subthalamic nucleus inferior thalamic peduncle, dorsolateral prefrontal cortex, supplementary motor area, and orbitofrontal cortex. Finally, we explore potential future neuromodulation approaches that may further refine and improve treatment.
-
The next several decades will see an exponential rise in the number of patients with disorders of memory and cognition, and of Alzheimer's disease in particular. Impending demographic shifts, an absence of effective treatments, and the significant burden these conditions place on patients, caregivers, and society, mean there is an urgent need to develop novel therapies. Deep brain stimulation (DBS) is a neurosurgical procedure that is a standard-of-care for many patients with treatment-refractory Parkinson's disease, dystonia, and essential tremor. ⋯ Such dysfunction may be amenable to modulation using focal brain stimulation. A global experience is now emerging for the use of DBS for these conditions, targeting key nodes in the memory circuit, including the fornix and nucleus basalis of Meynert. Such work holds promise as a novel therapeutic approach for one of medicine's most urgent priorities.
-
Deep brain stimulation (DBS) is an implanted electrical device that modulates specific targets in the brain resulting in symptomatic improvement in a particular neurologic disease, most commonly a movement disorder. It is preferred over previously used lesioning procedures due to its reversibility, adjustability, and ability to be used bilaterally with a good safety profile. Risks of DBS include intracranial bleeding, infection, malposition, and hardware issues, such migration, disconnection, or malfunction, but the risk of each of these complications is low--generally ≤ 5% at experienced, large-volume centers. ⋯ Brain targets implanted include the thalamus (most commonly for essential tremor), subthalamic nucleus (most commonly for Parkinson's disease), and globus pallidus (Parkinson's disease and dystonia), although new targets are currently being explored. Future developments include brain electrodes that can steer current directionally and systems capable of "closed loop" stimulation, with systems that can record and interpret regional brain activity and modify stimulation parameters in a clinically meaningful way. New, image-guided implantation techniques may have advantages over traditional DBS surgery.
-
Epidural spinal cord stimulation (SCS) is currently proposed to treat intractable neuropathic pain. Since the 1970s, isolated cases and small cohorts of patients suffering from dystonia, tremor, painful leg and moving toes (PLMT), or Parkinson’s disease were also treated with SCS in the context of exploratory clinical studies. Despite the safety profile of SCS observed in these various types of movement disorders, the degree of improvement of abnormal movements following SCS has been heterogeneous among patients and across centers in open-label trials, stressing the need for larger, randomized, double-blind studies. This article provides a comprehensive review of both experimental and clinical studies of SCS application in movement disorders.