Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics
-
Neuromodulation shows increasing promise in the treatment of psychiatric disorders, particularly obsessive-compulsive disorder (OCD). Development of tools and techniques including deep brain stimulation, transcranial magnetic stimulation, and electroconvulsive therapy may yield additional options for patients who fail to respond to standard treatments. This article reviews the motivation for and use of these treatments in OCD. ⋯ Neuroimaging findings and historical treatments that led to the use of neuromodulation for OCD are presented. We then present evidence from neuromodulation studies using deep brain stimulation, electroconvulsive therapy, and transcranial magnetic stimulation, with targets including nucleus accumbens, subthalamic nucleus inferior thalamic peduncle, dorsolateral prefrontal cortex, supplementary motor area, and orbitofrontal cortex. Finally, we explore potential future neuromodulation approaches that may further refine and improve treatment.
-
Deep brain stimulation (DBS) is an implanted electrical device that modulates specific targets in the brain resulting in symptomatic improvement in a particular neurologic disease, most commonly a movement disorder. It is preferred over previously used lesioning procedures due to its reversibility, adjustability, and ability to be used bilaterally with a good safety profile. Risks of DBS include intracranial bleeding, infection, malposition, and hardware issues, such migration, disconnection, or malfunction, but the risk of each of these complications is low--generally ≤ 5% at experienced, large-volume centers. ⋯ Brain targets implanted include the thalamus (most commonly for essential tremor), subthalamic nucleus (most commonly for Parkinson's disease), and globus pallidus (Parkinson's disease and dystonia), although new targets are currently being explored. Future developments include brain electrodes that can steer current directionally and systems capable of "closed loop" stimulation, with systems that can record and interpret regional brain activity and modify stimulation parameters in a clinically meaningful way. New, image-guided implantation techniques may have advantages over traditional DBS surgery.
-
The inflammatory response following spinal cord injury (SCI) involves the activation of resident microglia and the infiltration of macrophages. Macrophages and microglia can be polarized into the classically activated proinflammatory M1 phenotype or the alternatively activated anti-inflammatory M2 phenotype. Programmed cell death 1 (PD-1) is a critical immune inhibitory receptor involved in innate and adaptive immune responses. ⋯ Therefore, our results suggest that PD-1 signaling plays an important role in the regulation of macrophage/microglial polarization. Thus, deregulated PD-1 signaling may induce the polarization of macrophages/microglia toward the M1 phenotype. Overall, our results provide new insights into the modulatory mechanisms of macrophage/microglial polarization, thereby possibly facilitating the development of new therapies for SCI via the regulation of macrophage/microglial polarization through PD-1 signaling.
-
Historical Article
Use of cortical stimulation in neuropathic pain, tinnitus, depression, and movement disorders.
Medical treatment must strike a balance between benefit and risk. As the field of neuromodulation develops, decreased invasiveness, in combination with maintenance of efficacy, has become a goal. We provide a review of the history of cortical stimulation from its origins to the current state. ⋯ The third part focuses on major depression. The fourth section concludes with the discussion of the use of cortical stimulation in movement disorders. Each part discusses the development of the field, describes the current care protocols, and suggests future avenues for research needed to advance neuromodulation.
-
Bone marrow mesenchymal stromal cells drive protective M2 microglia polarization after brain trauma.
Microglia/macrophages (M) are major contributors to postinjury inflammation, but they may also promote brain repair in response to specific environmental signals that drive classic (M1) or alternative (M2) polarization. We investigated the activation and functional changes of M in mice with traumatic brain injuries and receiving intracerebroventricular human bone marrow mesenchymal stromal cells (MSCs) or saline infusion. MSCs upregulated Ym1 and Arginase-1 mRNA (p < 0.001), two M2 markers of protective M polarization, at 3 and 7 d postinjury, and increased the number of Ym1(+) cells at 7 d postinjury (p < 0.05). ⋯ In vitro, MSCs directly counteracted the proinflammatory response of primary murine microglia stimulated by tumor necrosis factor-α + interleukin 17 or by tumor necrosis factor-α + interferon-γ and induced M2 proregenerative traits, as indicated by the downregulation of inducible nitric oxide synthase and upregulation of Ym1 and CD206 mRNA (p < 0.01). In conclusion, we found evidence that MSCs can drive the M transcriptional environment and induce the acquisition of an early, persistent M2-beneficial phenotype both in vivo and in vitro. Increased Ym1 expression together with reduced in vivo phagocytosis suggests M selection by MSCs towards the M2a subpopulation, which is involved in growth stimulation and tissue repair.