Mucosal immunology
-
Review Historical Article
Seasonal and pandemic influenza: 100 years of progress, still much to learn.
Influenza viruses are highly transmissible, both within and between host species. The severity of the disease they cause is highly variable, from the mild and inapparent through to the devastating and fatal. The unpredictability of epidemic and pandemic outbreaks is accompanied but the predictability of seasonal disease in wide areas of the Globe, providing an inexorable toll on human health and survival. ⋯ This review highlights the importance of the mucosa in defence against infection and in understanding the pathogenesis of disease. Although vaccines have been available for many decades, they remain suboptimal in needing constant redesign and in only providing short-term protection. There are real prospects for improvement in treatment and prevention of influenza soon, based on deeper knowledge of how the virus transmits, replicates and triggers immune defences at the mucosal surface.
-
Tissue-resident memory T cells (Trm) in the lung provide a frontline defence against respiratory pathogens. Vaccination models that lodge CD8+ Trm populations in the lung have been developed, all of which incorporate the local delivery of antigen plus adjuvant into the airways; a necessary approach as local cognate antigen recognition is required for optimal lung Trm development. Although pulmonary delivery of antigen is important for lung Trm development, the impact the co-administered adjuvant has on Trm differentiation is unclear. ⋯ Zymosan signalling via dectin-1 receptor was sufficient to promote antigen-independent lung Trm development. When combined with an injectable influenza vaccination regime, intranasal zymosan delivery significantly boosted the size of the influenza virus-specific lung Trm population. Our results highlight that eliciting the appropriate local inflammatory milieu can by-pass the requirement for local antigen recognition in lung Trm development and emphasises that the appropriate selection of adjuvant can greatly improve vaccines that aim to elicit pulmonary Trm.
-
Resident memory CD8 T (TRM) cells in the lung parenchyma (LP) and airways provide heterologous protection against influenza virus challenge. However, scant knowledge exists regarding factors necessary to establish and maintain lung CD8 TRM. Here we demonstrate that, in contrast to mechanisms described for other tissues, airway, and LP CD8 TRM establishment requires cognate antigen recognition in the lung. ⋯ The interaction of effector CD8 T cells with cognate antigen in the lung resulted in increased and prolonged expression of the tissue-retention markers CD69 and CD103, and increased expression of the adhesion molecule VLA-1. The inability of localized inflammation alone to establish lung TRM resulted in decreased viral clearance and increased mortality following heterosubtypic influenza challenge, despite equal numbers of circulating memory CD8 T cells. These findings demonstrate that pulmonary antigen encounter is required for the establishment of lung CD8 TRM and may inform future vaccine strategies to generate robust cellular immunity against respiratory pathogens.
-
Resident memory T cells (TRM) reside in the lung epithelium and mediate protective immunity against respiratory pathogens. Although lung CD8+ TRM have been extensively characterized, the properties of CD4+ TRM remain unclear. Here we determined the transcriptional signature of CD4+ TRM, identified by the expression of CD103, retrieved from human lung resection material. ⋯ Interestingly, the superior cytokine production appears to be because of an accessible interferon-γ (IFNγ) locus and was partially because of rapid translation of preformed mRNA. Our studies provide a molecular understanding of the maintenance and potential function of CD4+ TRM in the human lung. Understanding the specific properties of CD4+ TRM is required to rationally improve vaccine design.