Brain imaging and behavior
-
Brain Imaging Behav · Sep 2012
Diffusion tensor imaging in moderate-to-severe pediatric traumatic brain injury: changes within an 18 month post-injury interval.
Traumatic brain injury (TBI) is a leading cause of death and disability in children, yet little is known regarding the pattern of TBI-related microstructural change and its impact on subsequent development. Diffusion tensor imaging (DTI) was used to examine between-group differences at two time points (planned intervals of 3 months and 18 months post-injury) and within-group longitudinal change in a group of children and adolescents aged 7-17 years with moderate-to-severe TBI (n = 20) and a comparison group of children with orthopedic injury (OI) (n = 21). In the 3- and 18-month cross-sectional analyses, tract-based spatial statistics (TBSS) generally revealed decreased fractional anisotropy (FA) and increased apparent diffusion coefficient (ADC) in the TBI group in regions of frontal, temporal, parietal, and occipital white matter as well as several deep subcortical structures, though areas of FA decrease were more prominent at the 3-month assessment, and areas of ADC increase were more prominent at the 18 month assessment, particularly in the frontal regions. ⋯ The TBI group demonstrated primarily regions of FA decrease and ADC increase over time, consistent with presumed continued degenerative change, though regions of ADC decrease were also appreciated. These results suggest that TBI-related microstructural changes are dynamic in children and continue until at least 18 months post-injury. Understanding the course of these changes in DTI metrics may be important in TBI for facilitating advances in management and intervention.
-
Brain Imaging Behav · Sep 2012
Pilot fMRI investigation of representational plasticity associated with motor skill learning and its functional consequences.
Complex skill learning at a joint initiates competition between its representation in the primary motor cortex (M1) and that of the neighboring untrained joint. This process of representational plasticity has been mapped by cortically-evoking simple movements. We investigated, following skill learning at a joint, 1) whether comparable processes of representational plasticity are observed when mapping is based on volitionally produced complex movements and 2) the consequence on the skill of the adjacent untrained joint. ⋯ Importantly, these processes may limit the degree of transfer of skill between trained and adjacent untrained joints. These pilot findings that await confirmation in large-scale studies have significant implications for neuro-rehabilitation. For instance, techniques, such as motor cortical stimulation, that can potentially modulate processes of representational plasticity between trained and adjacent untrained representations, may optimize transfer of skill.
-
Brain Imaging Behav · Sep 2012
Emotional memory retrieval. rTMS stimulation on left DLPFC increases the positive memories.
A suggestive hypothesis proposed that the lateral prefrontal cortex (LPFC) may be identified as the site of emotion-memory integration, since it was shown to be sensitive to the encoding and retrieval of emotional content. In the present research we explored the role of the dorsolateral prefrontal cortex (DLPFC) in memory retrieval of positive vs. negative emotional stimuli. This effect was analyzed by using an rTMS paradigm that induced a cortical activation of the left DLPFC. ⋯ We found that the rTMS stimulation over this area affects the memory retrieval of positive emotional material, with higher memory efficiency (reduced RTs). This result suggested that left DLPFC activation promotes the memory retrieval of emotional information. Secondly, the valence model of emotional cue processing may explain decreasing of RTs, by pointing out the distinct role the left hemisphere has in positive emotional cue processing.