Brain imaging and behavior
-
Accumulating evidence from brain structural imaging studies has supported that chronic pain could induce changes in brain gray matter volume. However, few studies have focused on the gray matter alterations of Trigeminal neuralgia (TN). In this study, twenty-eight TN patients (thirteen females; mean age, 45.86 years ±11.17) and 28 healthy controls (HC; thirteen females; mean age, 44.89 years ±7.67) were included. ⋯ Based on a voxel-wise analysis, the TN group showed significantly decreased gray matter volume in the bilateral superior/middle temporal gyrus (STG/MTG), bilateral parahippocampus, left anterior cingulate cortex (ACC), caudate nucleus, right fusiform gyrus, and right cerebellum compared with the HC. In addition, we found that the gray matter volume in the bilateral STG/MTG was negatively correlated with the duration of TN. These results provide compelling evidence for gray matter abnormalities in TN and suggest that the duration of TN may be a critical factor associated with brain alterations.
-
Brain Imaging Behav · Apr 2017
ReviewStructural imaging of mild traumatic brain injury may not be enough: overview of functional and metabolic imaging of mild traumatic brain injury.
A majority of patients with traumatic brain injury (TBI) present as mild injury with no findings on conventional clinical imaging methods. Due to this difficulty of imaging assessment on mild TBI patients, there has been much emphasis on the development of diffusion imaging modalities such as diffusion tensor imaging (DTI). However, basic science research in TBI shows that many of the functional and metabolic abnormalities in TBI may be present even in the absence of structural damage. ⋯ Although there are various differences in protocols of positron emission tomography (PET), single photon emission computed tomography (SPECT), functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG) methods, these may be important modalities to be used in conjunction with structural imaging in the future in order to detect and understand the pathophysiology of mild TBI. In this review, studies of mild TBI patients using these modalities that detect functional and metabolic state of the brain are discussed. Each modality's advantages and disadvantages are compared, and potential future applications of using combined modalities are explored.
-
Brain Imaging Behav · Apr 2017
The effect of action observation/execution on mirror neuron system recruitment: an fMRI study in healthy individuals.
Action observation and execution activate regions that are part of the motor and mirror neuron systems (MNS). Using functional magnetic resonance (fMRI), we defined the presence and extent of MNS activation during three different motor tasks with the dominant, right-upper limb in healthy individuals. The influence of the modality of task administration (execution, observation, observation and execution) was also investigated. fMRI scans during the execution (E) of a motor task, the observation (O) of a video showing the same task performed by another person and the simultaneous observation and execution (OE) of the task were obtained from three groups of healthy subjects (15 subjects per group) randomized to perform: a simple motor (SM) task, a complex motor (CM) task and a finalistic motor (FM) task. ⋯ Compared to O and E, OE resulted in the recruitment of additional, specific, brain areas in the cerebellum, temporal and parietal lobes. The modality of administration and the type of task modulated MNS recruitment during motor acts. This might have practical implications for the set-up of individualized motor rehabilitation strategies.