Brain imaging and behavior
-
Brain Imaging Behav · Feb 2019
High-sensitivity neuroimaging biomarkers for the identification of amnestic mild cognitive impairment based on resting-state fMRI and a triple network model.
Many functional magnetic resonance imaging (fMRI) studies have indicated that Granger causality analysis (GCA) is a suitable method for revealing causal effects between brain regions. The purpose of the present study was to identify neuroimaging biomarkers with a high sensitivity to amnestic mild cognitive impairment (aMCI). The resting-state fMRI data of 30 patients with Alzheimer's disease (AD), 14 patients with aMCI, and 18 healthy controls (HC) were evaluated using GCA. ⋯ This result suggests that analysing the directed connectivity of inter-hemisphere connections represents a sensitive method for revealing connectivity changes observed in patients with aMCI. Specifically, inhibitory within-DMN connectivity from the posterior cingulate cortex (PCC) to the hippocampal formation and from the thalamus to the PCC as well as excitatory within-SN connectivity from the dorsal anterior cingulate cortex (dACC) to the striatum, from the ECN to the DMN, and from the SN to the ECN demonstrated that changes in connectivity likely reflect compensatory effects in aMCI. These findings suggest that changes observed in the triple networks may be used as sensitive neuroimaging biomarkers for the early detection of aMCI.