Brain imaging and behavior
-
Brain Imaging Behav · Apr 2021
Microstructural white matter alterations in Alzheimer's disease and amnestic mild cognitive impairment and its diagnostic value based on diffusion kurtosis imaging: a tract-based spatial statistics study.
This prospective study aimed to explore the white matter microstructural alterations in Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) using the Tract-based Spatial Statistics (TBSS) method of diffusion kurtosis imaging (DKI). Diffusion images were collected from 45 AD patients, 42 aMCI patients, and 35 healthy controls (HC). The differences of DKI-derived parameters, including kurtosis fractional anisotropy (KFA), mean kurtosis (MK), fractional anisotropy (FA), and mean diffusivity (MD), were compared across the three groups using the TBSS method. ⋯ The area under the ROC curve (AUC) for the splenium of corpus callosum KFA values were highest for the diagnosis of aMCI and AD patients. In conclusion, the compactness and complexity of white matter microstructures were reduced in AD and aMCI patients. DKI can provide information about the severity of AD progression, and KFA might be more sensitive for the detection of white matter microstructural alterations.
-
Brain Imaging Behav · Apr 2021
Framing potential for adverse effects of repetitive subconcussive impacts in soccer in the context of athlete and non-athlete controls.
The benefits of athletic activity may be attenuated by sport-related head impacts, including soccer-related concussion and subconcussive events. The purpose of this study is to characterize the specific effects of soccer heading on white matter microstructure and cognitive function, independent of concussion, relative to non-athlete controls and relative to active athletes who are not involved in collision sports. 246 amateur soccer players, 72 non-contact/non-collision sports athletes and 110 healthy,non-athlete controls were included in the study, and underwent cognitive testing and 3T diffusion tensor imaging (DTI). Voxelwise linear regression, comparing soccer players and non-contact/non-collision sports athletes healthy,non-athlete controls, identified regions of abnormally low and high fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) in athlete participants. ⋯ Athletes with no or lower exposure to repetitive heading exhibited greater expression of low RD, greater expression of high FA and better performance on tasks of attention, processing speed, verbal memory, and working memory compared to non-athletes. Soccer players with the highest exposure to repetitive head impacts, however, did not differ significantly from healthy, non-athletes on either micro-structural features or cognitive performance, findings not explained by concussion history or demographic factors. These results are consistent with the notion that beneficial effects of athletic conditioning or training on brain structure and function may be attenuated by exposure to repeated subconcussive head impacts.