Brain imaging and behavior
-
Brain Imaging Behav · Jun 2021
Brain functional connectivity during storage based on resting state functional magnetic resonance imaging with synchronous urodynamic testing in healthy volunteers.
The aim of the study was to elucidate the correlation between spatially distinct brain areas with a full bladder from the perspective of functional connectivity using resting-state functional magnetic resonance imaging (rs-fMRI) with simultaneous urodynamic testing in healthy volunteers. The brain regions with full and empty bladders were reported via rs-fMRI using a 3 T magnetic resonance system. Then, we identified brain regions that are activated during bladder filling by calculating the amplitude of low-frequency fluctuation (ALFF) values using brain imaging software (DPABI and SPM8) and empirically derived six regions of interest (ROI) from analysis of activation were used as seeds for resting-state functional connectivity (rs-FC) analysis with the rest of the brain to examine differences in the two conditions. ⋯ The decrease in functional connection was mainly located in the right inferior orbitofrontal cortex, prefrontal cortex, including the superior frontal gyrus, orbitofrontal cortex, and anterior cingulate cortex, the left inferior orbitofrontal cortex, right insula, middle occipital gyrus, angular gyrus, inferior frontal gyrus, right insula, middle temporal gyrus, inferior parietal lobe, middle occipital gyrus, supplementary motor area, superior frontal gyrus, left insula, bilateral posterior cingulate cortex, bilateral precuneus, middle occipital gyrus, and right middle temporal lobe. There were significant changes in the functional connectivity of the brain between full and empty bladders in healthy volunteers, which suggests that the central neural processes involved in storage needs brain areas with integrated control. These findings are strong evidence for physicians to consider brain responses in urine storage and offer the provision of some normative data.