Cell host & microbe
-
Cell host & microbe · Mar 2021
Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies.
The evolution of SARS-CoV-2 could impair recognition of the virus by human antibody-mediated immunity. To facilitate prospective surveillance for such evolution, we map how convalescent plasma antibodies are impacted by all mutations to the spike's receptor-binding domain (RBD), the main target of plasma neutralizing activity. Binding by polyclonal plasma antibodies is affected by mutations in three main epitopes in the RBD, but longitudinal samples reveal that the impact of these mutations on antibody binding varies substantially both among individuals and within the same individual over time. ⋯ V2 and 20J/501Y. V3 SARS-CoV-2 lineages. Going forward, these plasma escape maps can inform surveillance of SARS-CoV-2 evolution.
-
Cell host & microbe · Mar 2021
Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization.
Neutralizing antibodies against the SARS-CoV-2 spike (S) protein are a goal of COVID-19 vaccines and have received emergency use authorization as therapeutics. However, viral escape mutants could compromise efficacy. To define immune-selected mutations in the S protein, we exposed a VSV-eGFP-SARS-CoV-2-S chimeric virus, in which the VSV glycoprotein is replaced with the S protein, to 19 neutralizing monoclonal antibodies (mAbs) against the receptor-binding domain (RBD) and generated 50 different escape mutants. ⋯ Some variants (e.g., S477N) were resistant to neutralization by multiple mAbs, whereas others (e.g., E484K) escaped neutralization by convalescent sera. Additionally, sequential selection identified mutants that escape neutralization by antibody cocktails. Comparing these antibody-mediated mutations with sequence variation in circulating SARS-CoV-2 revealed substitutions that may attenuate neutralizing immune responses in some humans and thus warrant further investigation.
-
Cell host & microbe · Mar 2021
The great escape? SARS-CoV-2 variants evading neutralizing responses.
In the latest issues of Cell Host & Microbe and Cell, three articles describe new mutations in the SARS-CoV-2 Spike receptor binding domain that escape neutralizing responses. These highlight the importance of surveillance of SARS-CoV-2 evolution to anticipate and manage new variants that could impact reinfection, vaccine efficacy, and immunotherapies.