ACS nano
-
The emergence of a pandemic affecting the respiratory system can result in a significant demand for face masks. This includes the use of cloth masks by large sections of the public, as can be seen during the current global spread of COVID-19. However, there is limited knowledge available on the performance of various commonly available fabrics used in cloth masks. ⋯ Cotton, the most widely used material for cloth masks performs better at higher weave densities (i.e., thread count) and can make a significant difference in filtration efficiencies. Our studies also imply that gaps (as caused by an improper fit of the mask) can result in over a 60% decrease in the filtration efficiency, implying the need for future cloth mask design studies to take into account issues of "fit" and leakage, while allowing the exhaled air to vent efficiently. Overall, we find that combinations of various commonly available fabrics used in cloth masks can potentially provide significant protection against the transmission of aerosol particles.
-
COVID-19 has spread globally since its discovery in Hubei province, China in December 2019. A combination of computed tomography imaging, whole genome sequencing, and electron microscopy were initially used to screen and identify SARS-CoV-2, the viral etiology of COVID-19. ⋯ We describe point-of-care diagnostics that are on the horizon and encourage academics to advance their technologies beyond conception. Developing plug-and-play diagnostics to manage the SARS-CoV-2 outbreak would be useful in preventing future epidemics.
-
Coronavirus disease 2019 (COVID-19) is a newly emerging human infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously called 2019-nCoV). Based on the rapid increase in the rate of human infection, the World Health Organization (WHO) has classified the COVID-19 outbreak as a pandemic. Because no specific drugs or vaccines for COVID-19 are yet available, early diagnosis and management are crucial for containing the outbreak. ⋯ Our FET device could detect the SARS-CoV-2 spike protein at concentrations of 1 fg/mL in phosphate-buffered saline and 100 fg/mL clinical transport medium. In addition, the FET sensor successfully detected SARS-CoV-2 in culture medium (limit of detection [LOD]: 1.6 × 101 pfu/mL) and clinical samples (LOD: 2.42 × 102 copies/mL). Thus, we have successfully fabricated a promising FET biosensor for SARS-CoV-2; our device is a highly sensitive immunological diagnostic method for COVID-19 that requires no sample pretreatment or labeling.
-
Extracellular vesicles (EVs) released by mesenchymal stem cells (MSCs) have exhibited regenerative capability in animal models of ischemia-reperfusion (I/R) acute kidney injury (AKI) and are considered as potential alternatives to direct MSC therapy. However, real-time in vivo imaging of MSC-EVs in renal I/R injury has yet to be established. Renal intracellular targets of MSC-EVs responsible for their regenerative effects also remain elusive. ⋯ Increased microRNA-200a-3p expression in renal TECs induced by MSC-EVs was identified as a regulatory mechanism contributing to the protective actions on mitochondria as well as stimulating the renal signal transduction pathways. In conclusion, MSC-EVs accumulated in the renal tubules during renal I/R injury and promoted the recovery of kidney function via activating the Keap1-Nrf2 signaling pathway and enhancing mitochondrial function of TECs. DPA-SCP with AIE characteristics allows noninvasive and precise in vivo visualization of MSC-EVs in kidney repair.
-
Extracellular vesicles (EVs) attract much attention in liver pathology because they regulate cell-cell communication and many pathophysiological events by transferring their cargos. Monitoring and understanding the in vivo fate and therapeutic capacity of these EVs is critical for the development and optimization of EV-based diagnosis and therapy. Herein, we demonstrate the use of an aggregation-induced emission luminogen, DPA-SCP, for the real-time tracking of EVs derived from human placenta-derived mesenchymal stem cells (MSCs) and their therapeutic effects in a mouse acute liver injury (ALI) model. ⋯ In vivo, DPA-SCP precisely and quantitatively tracked the behaviors of EVs for 7 days in the mouse ALI model without influencing their regenerative capacity and therapeutic efficacy. The therapeutic effects of EVs may attribute to their ability for reducing inflammatory cell infiltration, enhancing cell survival and antiapoptotic effects. In conclusion, DPA-SCP with an AIE signature serves as a favorable and safe tracker for in vivo real-time imaging of EVs in liver regeneration.