Journal of breath research
-
Many (multi-centre) breath-analysis studies require transport and storage of samples. We aimed to test the effect of transportation and storage using sorbent tubes of exhaled breath samples for diagnostic accuracy of eNose and GC-MS analysis. As a reference standard for diagnostic accuracy, breath samples of asthmatic patients and healthy controls were analysed by three eNose devices. ⋯ Similar accuracies were achieved at t1 (AUC eNose 0.78; GC-MS 0.84), t7 (AUC eNose 0.76; GC-MS 0.79) and t14 (AUC eNose 0.83; GC-MS 0.84). The GC-MS analysis of compounds showed an adequate stability for all 15 compounds during the 14 day period. Short-term transportation and storage using sorbent tubes of breath samples does not influence the diagnostic accuracy for discrimination between asthma and health by eNose and GC-MS.
-
This report proposes a potentially sensitive and simple physiological method to detect early changes and to follow disease progression in obstructive pulmonary disease (COPD) based upon the usual pulmonary function test. Pulmonary function testing is a simple, although relatively insensitive, method to detect and follow COPD. As a proof-of-concept, we have examined the slope of the plateau for carbon dioxide during forced expiratory capnography in healthy (n = 10) and COPD subjects (n = 10). ⋯ Most important, for the COPD subjects, there was a significant positive correlation between the slope of the forced exhaled capnogram and a defined radiodensity measurement of the lung by high-resolution computed tomography (r(2) = 0.49, p = 0.02). The slope of the forced exhalation capnogram may be a simple way to determine physiological changes in the lungs in patients with COPD that are not obtainable with standard pulmonary function tests. Forced exhalation capnography would be of great clinical benefit if it can identify early disease changes and at-risk individuals.
-
A standard procedure for exhaled breath condensate (EBC) collection is still lacking. The aim of this study was to compare the concentration of several biomarkers in whole (W-EBC) and fractionated EBC (A-EBC), the latter collected starting from CO2 ≥ 50% increase during exhalation. Forty-five healthy non-smokers or asymptomatic light smokers were enrolled. ⋯ H2O2 (0.13 versus 0.08 µM), 8-isoprostane (4.9 versus 4.4 pg ml(-1)), malondialdehyde (MDA) (4.2 versus 3.2 nM) and 4-hydroxy-2-nonhenal (HNE) (0.78 versus 0.66 nM) were all higher in W-EBC, suggesting a contribution from the upper airways to oxidative stress biomarkers in apparently healthy subjects. NH4(+) was also higher in W-EBC (median: 590 versus 370 µM), with an estimated increase over alveolar and bronchial air by a factor 1.5. pH was marginally, but significantly higher in W-EBC (8.05 versus 8.01). In conclusion, the fractionation of exhaled air may be promising in clinical and occupational medicine.