Current drug abuse reviews
-
Although dopaminergic system represents the cornerstone in rewarding, other neurotransmitters can modulate both the reward system and the psychomotor effects of addictive drugs. Many hypotheses have been proposed for a better understanding of the reward system and its role in drug addiction. However, after many years of investigation, no single theory can completely explain the neural basis of drug addiction. ⋯ Consequently, genetic variations of neurotransmission are thought to influence reward processing that in turn may affect distinctive social behavior and susceptibility to addiction. However, the individual variations can not be based mainly on genetics; environmental factors seem to play a role too. Here we discuss the current knowledge about the orquestic regulation of different neurotransmitters on reward-seeking behavior and their potential effect on drug addiction.
-
Curr Drug Abuse Rev · Sep 2012
ReviewDirect association of Mu-opioid and NMDA glutamate receptors supports their cross-regulation: molecular implications for opioid tolerance.
In the nervous system, the interaction of opioids like morphine and its derivatives, with the G protein-coupled Mu-opioid receptor (MOR) provokes the development of analgesic tolerance, as well as physical dependence. Tolerance implies that increasing doses of the drug are required to achieve the same effect, a phenomenon that contributes significantly to the social problems surrounding recreational opioid abuse. In recent years, our understanding of the mechanisms that control MOR function in the nervous system, and that eventually produce opioid tolerance, has increased greatly. ⋯ Accordingly, we propose a model that incorporates the most relevant signaling components implicated in opioid tolerance in which, certain signals originating from the activated MOR are perceived by the associated NMDAR, which in turn exerts a negative feedback effect on MOR signaling. MOR- and NMDAR-mediated signals work together in a sequential and interconnected manner to ultimately induce MOR desensitization. Future studies of these phenomena should focus on adding further components to this signaling pathway in order to better define the mechanism underlying MOR desensitization in neural cells.