Environmental science & technology
-
Environ. Sci. Technol. · Dec 2007
Comparative StudyComparative study of regulated and unregulated air pollutant emissions before and after conversion of automobiles from gasoline power to liquefied petroleum gas/gasoline dual-fuel retrofits.
Liquefied petroleum gas (LPG) is increasingly being examined as an alternative to gasoline use in automobiles as interest grows in reducing air pollutant emissions. In this study, emissions of regulated (CO, THC, NO(x)) and unregulated air pollutants, including CO2, particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and BTEX (acronym for benzene, toluene, ethylbenzene, xylene), were measured before and after conversion of nine gasoline-powered automobiles to LPG/ gasoline dual-fuel retrofits. The tests were conducted on a standard chassis dynamometer in accordance with the United States Environmental Protection Agency FTP-75 test procedure, with the exception that all tests were conducted under hot-start driving conditions. ⋯ The discrepancy between PAH and BaP(eq) emissions resulted from the higher emission percentages of high molecular weight PAHs for LPG, which might be from lubricant oil. The average emission factors of benzene, toluene, ethylbenzene, and xylene were 351, 4400, 324, and 1100 microg/ km, respectively, with LPG as fuel, which were all significantly lower than those for gasoline (95% confidence level). The average reduction percentages were 78%, 61%, 57%, and 58% for benzene, toluene, ethylbenzene, and xylene, respectively.