Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
-
Neuropsychopharmacology · Jan 2003
Chronic exposure to cold stress alters electrophysiological properties of locus coeruleus neurons recorded in vitro.
Chronic stress exposure can alter central noradrenergic function. Previously, we reported that in chronically cold-exposed rats the release of norepinephrine and electrophysiological activation of locus coeruleus (LC) neurons is enhanced in response to multiple excitatory stimuli without alterations in basal activity. In the present studies, we used in vitro intracellular recording techniques to explore the effect of chronic cold exposure on the basal and evoked electrophysiological properties of LC neurons in horizontal slices of the rat brainstem. ⋯ These data demonstrate that the stress-evoked sensitization of LC neurons observed in vivo is at least in part maintained in the slice preparation and suggest that alterations in electrophysiological properties of LC neurons contribute to the chronic stress-induced sensitization of central noradrenergic function observed in vivo. Furthermore, the present data suggest that an alteration in autoinhibitory control of LC activity is involved in the chronic stress-induced alterations. The enhanced functional capacity of LC neurons following cold exposure of rats may represent a unique model to study the mechanisms underlying the alterations in central noradrenergic function observed in humans afflicted with mood and anxiety disorders.