Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
-
Neuropsychopharmacology · Sep 2012
Amygdala subregions tied to SSRI and placebo response in patients with social anxiety disorder.
The amygdala is a key structure in the pathophysiology of anxiety disorders, and a putative target for anxiolytic treatments. Selective serotonin reuptake inhibitors (SSRIs) and placebo seem to induce anxiolytic effects by attenuating amygdala responsiveness. However, conflicting amygdala findings have also been reported. ⋯ All subgroups, including nonresponders, showed deactivation of the left lateral part of the amygdala. No rCBF differences were found between SSRI responders and placebo responders. This study provides new insights into the brain dynamics underlying anxiety relief by demonstrating common amygdala targets for pharmacologically and psychologically induced anxiety reduction, and by showing that the amygdala is functionally heterogeneous in anxiolysis.
-
Neuropsychopharmacology · Sep 2012
The effect of chronic cannabinoids on broadband EEG neural oscillations in humans.
Animal and cellular work has shown that central cannabinoid-1 receptors modulate neural oscillations in the gamma range (40 Hz), which may be important for normal perceptual and cognitive processes. In order to assess the effect of cannabinoids on broadband-frequency neural oscillations in humans, the current study examined the effect of chronic cannabis use on auditory steady-state responses (ASSRs) utilizing electroencephalography (EEG). Passive ASSRs were assessed using varying rates of binaural stimulation (auditory click-trains; 10-50 Hz in increments of 5 Hz; 80 dB SPL) in carefully screened cannabis users and controls. ⋯ Further, within the cannabis group, lower 40 Hz power correlated with an earlier age of onset of cannabis use (p<0.04). These data suggest that chronic exposure to exogenous cannabinoids can alter the ability to generate neural oscillations, particularly in the gamma range. This is consistent with preclinical animal and cellular data, which may have implications for understanding the short- and long-term psychopharmacological effects of cannabis.