Clinical and translational science
-
VM202 is a plasmid DNA encoding two isoforms of hepatocyte growth factor (HGF). A previous phase II study in subjects with painful diabetic peripheral neuropathy (DPN) showed significant reductions in pain. A phase III study was conducted to evaluate the safety and efficacy of VM202 in DPN. ⋯ Thus, there is a great medical need for safer and effective treatments for DPN. WHAT QUESTION DID THIS STUDY ADDRESS? Can nonviral gene delivery of hepatocyte growth factor reduce pain in patients with DPN and potentially modify progression of the disorder? WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? Nonviral gene therapy can be used safely and practically to treat DPN. HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE? As the first gene medicine to enter advanced clinical trials for the treatment of DPN, this study provides the proof of concept of an entirely new potential approach to the disorder.
-
The risk of fatal arrhythmias is the major concern for using chloroquine (CQ) or hydroxychloroquine (HCQ) to treat coronavirus disease 2019 (COVID-19), but the reported number of life-threatening arrhythmic events or deaths is relatively small. The objective of this study was to assess the arrhythmogenic risk of these two drugs using a multiscale heart simulation, which allows testing even at high concentrations, including those that cause fatal arrhythmias. We measured the inhibitory action of CQ, HCQ, and HCQ with 30 μM azithromycin (AZ) on six ion currents (fast [INa] and late [INa,L] components of the sodium current, L-type calcium current [ICa,L], rapid [IKr/hERG], and slow [IKs] components of delayed rectifier potassium, and inward rectifier potassium [IK1]) over a wide range of concentrations using the automated patch-clamp system. ⋯ WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? Our study showed that CQ and HCQ/AZ do not induce fatal arrhythmias even at concentrations much higher than in vitro antiviral half-maximal effective concentration (EC50 ) values at which QT prolongation exceeds 150 ms. We also found that estimated free plasma concentrations of CQ and HCQ/AZ achieved by currently used dosing protocols are lower than the antiviral EC50 for these drugs. HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE? Our simulation data provided a safety margin to the currently used clinical dose for CQ and HCQ/AZ.
-
We applied a set of in silico and in vitro assays, compliant with the Comprehensive In Vitro Proarrhythmia Assay (CiPA) paradigm, to assess the risk of chloroquine (CLQ) or hydroxychloroquine (OH-CLQ)-mediated QT prolongation and Torsades de Pointes (TdP), alone and combined with erythromycin (ERT) and azithromycin (AZI), drugs repurposed during the first wave of coronavirus disease 2019 (COVID-19). Each drug or drug combination was tested in patch clamp assays on seven cardiac ion channels, in in silico models of human ventricular electrophysiology (Virtual Assay) using control (healthy) or high-risk cell populations, and in human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. In each assay, concentration-response curves encompassing and exceeding therapeutic free plasma levels were generated. ⋯ In hiPSC-derived cardiomyocytes, all drugs showed early after-depolarizations, except AZI. Combining CLQ or OH-CLQ with a macrolide did not aggravate their effects. In conclusion, our integrated nonclinical CiPA dataset confirmed that, at therapeutic plasma concentrations relevant for malaria or off-label use in COVID-19, CLQ and OH-CLQ use is associated with a proarrhythmia risk, which is higher in populations carrying predisposing factors but not worsened with macrolide combination.