Oxidative medicine and cellular longevity
-
Oxid Med Cell Longev · Jan 2013
Status of systemic oxidative stress during therapeutic hypothermia in patients with post-cardiac arrest syndrome.
Therapeutic hypothermia (TH) is thought to be due to the downregulation of free radical production, although the details of this process remain unclear. Here, we investigate changes in oxidative stress and endogenous biological antioxidant potential during TH in patients with post-cardiac arrest syndrome (PCAS). Nineteen PCAS patients were enrolled in the study. ⋯ Levels of d-ROMs and BAP levels during the hypothermic stage (33°C) were suppressed significantly compared with pre-TH induction levels (P < 0.05), while both d-ROM and BAP levels increased with rewarming (33-36°C) and were correlated with brain temperature. Clinical monitoring of oxidative stress and antioxidant potential is useful for evaluating the redox state of patients undergoing TH after PCAS. Additional therapy to support the antioxidant potential in the rewarming stage following TH may reduce some of the observed side effects associated with the use of TH.
-
Oxid Med Cell Longev · Jan 2013
Ulinastatin suppresses burn-induced lipid peroxidation and reduces fluid requirements in a Swine model.
Objective. Lipid peroxidation plays a critical role in burn-induced plasma leakage, and ulinastatin has been reported to reduce lipid peroxidation in various models. This study aims to examine whether ulinastatin reduces fluid requirements through inhibition of lipid peroxidation in a swine burn model. ⋯ Furthermore, ulinastatin infusion significantly reduced plasma and tissue concentrations of TBARS in both immediate or delayed resuscitation groups. Conclusions. These results indicate that ulinastatin can reduce fluid requirements through inhibition of lipid peroxidation.
-
Oxid Med Cell Longev · Jan 2013
ReviewOxidative stress and antioxidant activity in hypothermia and rewarming: can RONS modulate the beneficial effects of therapeutic hypothermia?
Hypothermia is a condition in which core temperature drops below the level necessary to maintain bodily functions. The decrease in temperature may disrupt some physiological systems of the body, including alterations in microcirculation and reduction of oxygen supply to tissues. ⋯ Despite hypothermia and rewarming inducing injury, many benefits of hypothermia have been demonstrated when used to preserve brain, cardiac, hepatic, and intestinal function against ischemic injury. This review gives an overview of the effects of hypothermia and rewarming on the oxidant/antioxidant balance and provides hypothesis for the role of reactive oxygen species in therapeutic hypothermia.
-
Oxid Med Cell Longev · Jan 2013
Malondialdehyde adduct to hemoglobin: a new marker of oxidative stress suitable for full-term and preterm neonates.
Oxidative stress may play a central role in the onset of many diseases during the neonatal period. Malondialdehyde (MDA) is a marker of lipid peroxidation. The aim of this study was to evaluate a new marker, the malondialdehyde adduct to hemoglobin (MDA-Hb), which is measured in red blood cells (RBCs) and thus does not require that an additional blood sample be drawn. ⋯ During the first months of life, MDA-Hb concentrations were 9.4 nanomol/g Hb in hospitalized preterm neonates. MDA-Hb could be used to assess oxidative stress in preterm neonates. Together with clinical variables, it could be a useful marker for oxidative stress exposition in these higher risk patients.
-
Oxid Med Cell Longev · Jan 2013
Hypothermia improves oral and gastric mucosal microvascular oxygenation during hemorrhagic shock in dogs.
Hypothermia is known to improve tissue function in different organs during physiological and pathological conditions. The aim of this study was to evaluate the effects of hypothermia on oral and gastric mucosal microvascular oxygenation (μHbO2) and perfusion (μflow) under physiological and hemorrhagic conditions. Five dogs were repeatedly anesthetized. ⋯ The improved μ HbO2 might be based on an attenuated reduction in μ flow during hemorrhage and additional hypothermia (-51 ± 21 aU) compared to hemorrhage and normothermia (-106 ± 19 aU). μDO2 was accordingly attenuated under hypothermia during hemorrhage whereas DO2 did not change. Thus, in this study hypothermia alone improves oral μHbO2 and attenuates the effects of hemorrhage on oral and gastric μ HbO2. This effect seems to be mediated by an increased μDO2 on the basis of increased μ flow.