Oxidative medicine and cellular longevity
-
Oxid Med Cell Longev · Jan 2017
ReviewOmega-3 Polyunsaturated Fatty Acids in Critical Illness: Anti-Inflammatory, Proresolving, or Both?
Prognosis and outcomes of critically ill patients are strictly related with inflammatory status. Inflammation involves a multitude of interactions between different cell types and chemical mediators. Omega-3 polyunsaturated fatty acids (PUFAs), mainly represented by eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are able to inhibit different pathways including leukocyte chemotaxis, adhesion molecule expression and interactions, and production of inflammatory cytokines, through the action of specialized proresolving mediators (SPMs). ⋯ In this light, the resolution of inflammation is nowadays considered as an active process, instead of a passive process. In critical illness, SPMs regulate the excessive posttrauma inflammatory response, protecting organs from damage. This review focuses on the role of omega-3 PUFAs as pharma nutrition agents in acute inflammatory conditions, highlighting their effects as anti-inflammatory or proresolving agents.
-
Oxid Med Cell Longev · Jan 2017
TBHQ Alleviated Endoplasmic Reticulum Stress-Apoptosis and Oxidative Stress by PERK-Nrf2 Crosstalk in Methamphetamine-Induced Chronic Pulmonary Toxicity.
Methamphetamine (MA) leads to cardiac and pulmonary toxicity expressed as increases in inflammatory responses and oxidative stress. However, some interactions may exist between oxidative stress and endoplasmic reticulum stress (ERS). The current study is designed to investigate if both oxidative stress and ERS are involved in MA-induced chronic pulmonary toxicity and if antioxidant tertiary butylhydroquinone (TBHQ) alleviated ERS-apoptosis and oxidative stress by PERK-Nrf2 crosstalk. ⋯ Overexpression and phosphorylation of PERK rapidly phosphorylated eIF2α, increased ATF4, CHOP, bax, caspase 3, and caspase 12, and decreased bcl-2. These changes can be reversed by antioxidant TBHQ through upregulating expression of Nrf2. The above results indicated that TBHQ can alleviate MA-induced oxidative stress which can accelerate ERS to initiate PERK-dependent apoptosis and that PERK/Nrf2 is likely to be the key crosstalk between oxidative stress and ERS in MA-induced chronic pulmonary toxicity.
-
Oxid Med Cell Longev · Jan 2017
Decreased Tissue COX5B Expression and Mitochondrial Dysfunction during Sepsis-Induced Kidney Injury in Rats.
Background. Sepsis is defined as a life-threatening organ dysfunction due to a dysregulated host response to infection. Sepsis is the dominant cause of acute kidney injury (AKI), accounting for nearly 50% of episodes of acute renal failure. ⋯ Conclusions. COX5B could be a promising biomarker candidate since a significant association was found during experimental sepsis in the present study. For future research, COX5B should be evaluated as a biomarker in both human urine and serum to identify sepsis.
-
Oxid Med Cell Longev · Jan 2017
Review Meta AnalysisNeuroprotection of Catalpol for Experimental Acute Focal Ischemic Stroke: Preclinical Evidence and Possible Mechanisms of Antioxidation, Anti-Inflammation, and Antiapoptosis.
Neuroprotection is defined as using a therapy that affects the brain tissue in the still-viable ischemic penumbra to salvage or delay the infarction. Catalpol, the main active principle of the root of Radix Rehmanniae, was reported to have pleiotropic neuroprotective effects in neurodegenerative diseases including ischemic stroke. Here, we evaluated the neuroprotective effects of catalpol in experimental acute ischemic stroke. ⋯ Meta-analysis of these studies indicated that catalpol significantly improved the neurological function score according to Zea Longa score, Bederson score, balance beam-walking test, adhesive removal test, bar-grasping score, and corner test compared with the control (P < 0.05). In conclusion, catalpol exerted neuroprotective effects for experimental acute focal ischemic stroke, largely through reducing oxidative reactions, inhibiting apoptosis, and repressing inflammatory reactions and autophagy. However, these apparently positive findings should be interpreted with caution because of the methodological flaws.
-
Oxid Med Cell Longev · Jan 2017
ReviewHigh Circulating Levels of ANGPTL2: Beyond a Clinical Marker of Systemic Inflammation.
Angiopoietin-like 2 (ANGPTL2) is a proinflammatory protein belonging to the angiopoietin-like family. ANGPTL2 is secreted and detected in the systemic circulation. ⋯ The aim of this review is to propose answers concerning the potential sources of circulating ANGPTL2 and its common pathological properties associated with various chronic inflammatory diseases and death in humans. We believe that high circulating ANGPTL2 levels are more than an inflammatory marker and may reflect the senescent cellular load of an individual.