Drug testing and analysis
-
Drug testing and analysis · Oct 2016
Diphenidine, a new psychoactive substance: metabolic fate elucidated with rat urine and human liver preparations and detectability in urine using GC-MS, LC-MSn , and LC-HR-MSn.
Diphenidine is a new psychoactive substance (NPS) sold as a 'legal high' since 2013. Case reports from Sweden and Japan demonstrate its current use and the necessity of applying analytical procedures in clinical and forensic toxicology. Therefore, the phase I and II metabolites of diphenidine should be identified and based on these results, the detectability using standard urine screening approaches (SUSAs) be elucidated. ⋯ In incubations with CYP2D6 hydroxy-aryl and hydroxy-piperidine metabolites were detected. After application of a common users' dose, diphenidine metabolites could be detected in rat urine by the authors' GC-MS as well as LC-MSn SUSA. Copyright © 2016 John Wiley & Sons, Ltd.
-
Drug testing and analysis · Sep 2016
Identification of AB-FUBINACA metabolites in authentic urine samples suitable as urinary markers of drug intake using liquid chromatography quadrupole tandem time of flight mass spectrometry.
Synthetic cannabinoids are a group of psychoactive drugs presently widespread among drug users in Europe. Analytical methods to measure these compounds in urine are in demand as urine is a preferred matrix for drug testing. For most synthetic cannabinoids, the parent compounds are rarely detected in urine. ⋯ The parent compound was detected in 54% of the case samples. Also, after three hours of incubation with human liver microsomes, 77% of the signal from the parent compound remained. Copyright © 2015 John Wiley & Sons, Ltd.
-
Drug testing and analysis · Jul 2016
Determination of a selection of synthetic cannabinoids and metabolites in urine by UHPSFC-MS/MS and by UHPLC-MS/MS.
Two different analytical techniques, ultra-high performance supercritical fluid chromatography-tandem mass spectrometry (UHPSFC-MS/MS) and reversed phase ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), were used for the determination of two synthetic cannabinoids and eleven metabolites in urine; AM-2201 N-4-OH-pentyl, AM-2233, JWH-018 N-5-OH-pentyl, JWH-018 N-pentanoic acid, JWH-073 N-4-OH-butyl, JWH-073 N-butanoic acid, JWH-122 N-5-OH-pentyl, MAM-2201, MAM-2201 N-4-OH-pentyl, RCS-4 N-5-OH-pentyl, UR-144 degradant N-pentanoic acid, UR-144 N-4-OH-pentyl, and UR-144 N-pentanoic acid. Sample preparation included a liquid-liquid extraction after deconjugation with ß-glucuronidase. The UHPSFC-MS/MS method used an Acquity UPC(2 TM) BEH column with a mobile phase consisting of CO2 and 0.3% ammonia in methanol, while the UHPLC-MS/MS method used an Acquity UPLC® BEH C18 column with a mobile phase consisting of 5 mM ammonium formate (pH 10.2) and methanol. ⋯ Elution order obtained by UHPSFC-MS/MS was almost opposite to that obtained by UHPLC-MS/MS, making this instrument setup an interesting combination for screening and confirmation analyses in forensic cases. The UHPLC-MS/MS method has, since August 2014, been successfully used for confirmation of synthetic cannabinoids in urine samples revealing a positive immunoassay screening result. Copyright © 2015 John Wiley & Sons, Ltd.
-
Medicine counterfeiting is a current problem that the whole pharmaceutical field has to deal with. In 2014, counterfeits entered the legitimate supply chain in Europe. Quick and efficient action had to be taken. ⋯ Links could be revealed between the analyzed counterfeits, together with some interesting information about the modus operandi of the counterfeiters. The study was performed on a limited number of cases, and therefore encourages chemical and packaging profiling of counterfeits at a bigger scale. Copyright © 2015 John Wiley & Sons, Ltd.
-
Drug testing and analysis · Feb 2016
In vitro characterization of potential CYP- and UGT-derived metabolites of the psychoactive drug 25B-NBOMe using LC-high resolution MS.
One of the main challenges posed by the emergence of new psychoactive substances is their identification in human biological samples. Trying to detect the parent drug could lead to false-negative results when the delay between consumption and sampling has been too long. The identification of their metabolites could then improve their detection window in biological matrices. ⋯ Twenty-one metabolites, consisting of 12 CYP-derived and 9 UGT-derived metabolites, were identified. O-Desmethyl metabolites were the most abundant compounds after the phase I process, which appears to be in accordance with data from previously published NBOMe-intoxication case reports. Although other important metabolic transformations, such as sulfation, acetylation, methylation or glutathione conjugation, were not studied and artefactual metabolites might have been produced during the HLM incubation process, the record of all the metabolite MS spectra in our library should enable us to characterize relevant metabolites of 25B-NBOMe and allow us to detect 25B-MBOMe users.