Progress in molecular biology and translational science
-
Cerebral amyloid angiopathy (CAA) is cerebrovascular amyloid deposition. It is classified into several types according to the cerebrovascular amyloid proteins involved [amyloid β-protein (Aβ), cystatin C (ACys), prion protein (APrP), transthyretin (ATTR), gelsolin (AGel), ABri/ADan, and AL]. Sporadic Aβ-type CAA is commonly found in elderly individuals and patients with Alzheimer's disease (AD). ⋯ It has been proposed that cerebrovascular Aβ originates mainly from the brain and is transported to the vascular wall through a perivascular drainage pathway, where it polymerizes into fibrils on vascular basement membrane through interactions with extracellular components. CAA would be promoted by overproduction of Aβ40 (a major molecular species of cerebrovascular Aβ), a decrease of Aβ degradation, or reduction of Aβ clearance due to impairment of perivascular drainage pathway. Further understanding of the molecular pathogenesis of CAA would lead to development of disease-modifying therapies for CAA and CAA-related disorders.
-
Prog Mol Biol Transl Sci · Jan 2012
ReviewMembrane pores in the pathogenesis of neurodegenerative disease.
The neurodegenerative diseases described in this volume, as well as many nonneurodegenerative diseases, are characterized by deposits known as amyloid. Amyloid has long been associated with these various diseases as a pathological marker and has been implicated directly in the molecular pathogenesis of disease. However, increasing evidence suggests that these proteinaceous Congo red staining deposits may not be toxic or destructive of tissue. ⋯ These include irreversible insertion of the pores in lipid membranes, formation of heterodisperse pore sizes, inhibition by Congo red of pore formation, blockade of pores by zinc, and a relative lack of ion selectivity and voltage dependence. Although there exists some information about the physical structure of these pores, molecular modeling suggests that 4-6-mer amyloid subunits may assemble into 24-mer pore-forming aggregates. The molecular structure of these pores may resemble the β-barrel structure of the toxics pore formed by bacterial toxins, such as staphylococcal α-hemolysin, anthrax toxin, and Clostridium perfringolysin.