Journal of nuclear medicine : official publication, Society of Nuclear Medicine
-
68Ga-labeled urea-based inhibitors of the prostate-specific membrane antigen (PSMA), such as 68Ga-labeled N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED)-PSMA-11, are promising small molecules for targeting prostate cancer. A new radiopharmaceutical, 68Ga-labeled tris(hydroxypyridinone) (THP)-PSMA, has a simplified design for single-step kit-based radiolabeling. It features the THP ligand, which forms complexes with 68Ga3+ rapidly at a low concentration, at room temperature, and over a wide pH range, enabling direct elution from a 68Ge/68Ga generator into a lyophilized radiopharmaceutical kit in 1 step without manipulation. ⋯ Observed focal uptake in the prostate was localized to PSMA-expressing malignant tissue on histopathology. Metastatic PSMA-avid foci were also visualized with 68Ga-THP-PSMA PET. Single-step production from a Good Manufacturing Practice cold kit may enable rapid adoption.
-
Resection of tumors using targeted dual-modality probes combining preoperative imaging with intraoperative guidance is of high clinical relevance and might considerably affect the outcome of prostate cancer therapy. This work aimed at the development of dual-labeled prostate-specific membrane antigen (PSMA) inhibitors derived from the established N,N'-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N'-diacetic acid (HBED-CC)-based PET tracer 68Ga-Glu-urea-Lys(Ahx)-HBED-CC (68Ga-PSMA-11) to allow accurate intraoperative detection of PSMA-positive tumors. Methods: A series of novel PSMA-targeting fluorescent dye conjugates of Glu-urea-Lys-HBED-CC was synthesized, and their biologic properties were determined in cell-based assays and confocal microscopy. ⋯ The first proof-of-concept studies with the clinically relevant candidate 68Ga-Glu-urea-Lys-HBED-CC-IRDye800CW reinforced a fast, specific enrichment in PSMA-positive tumors, with rapid background clearance. With regard to intraoperative navigation, a specific fluorescence signal was detected in PSMA-expressing tissue. Conclusion: This study demonstrated that PSMA-11-derived dual-labeled dye conjugates are feasible for providing PSMA-specific pre-, intra-, and postoperative detection of prostate cancer lesions and have high potential for future clinical translation.