Nature reviews. Rheumatology
-
Strategies for the biological repair of intervertebral discs derive from the premise that disc degeneration results from impaired cellular activity and, therefore, that these structures can be induced to regenerate by implanting active cells or providing factors that restore normal cellular activity. In vitro and animal studies using this approach have had some success, but whether this success can be reproduced in degenerate human lumbar discs is unknown. ⋯ Current biologic approaches might place additional demands on an already precarious nutrient supply. Here, we discuss whether the loss of nutrients associated with disc degeneration limits the effectiveness of biologic approaches, and indicate that this neglected problem requires investigation if clinical application of such therapies is to succeed.
-
Naturally occurring Foxp3(+)CD25(+)CD4(+) regulatory T (TREG) cells maintain immunological self-tolerance and prevent a variety of autoimmune diseases, including rheumatic diseases such as rheumatoid arthritis and systemic lupus erythematosus. In animal models of rheumatic disease, autoimmune responses can be controlled by re-establishing the T-cell balance in favour of TREG cells. ⋯ These strategies require depletion of the effector T cells that mediate autoimmunity before initiating TREG-cell-based therapies. Immunotherapies that target TREG cells, and the balance of TREG cells and autoreactive T cells, are therefore an important modality for the treatment of autoimmune rheumatic disease.