Annals of physical and rehabilitation medicine
-
Ann Phys Rehabil Med · Sep 2015
ReviewNeuroprosthetic technologies to augment the impact of neurorehabilitation after spinal cord injury.
Spinal cord injury leads to a range of disabilities, including limitations in locomotor activity, that seriously diminish the patients' autonomy and quality of life. Electrochemical neuromodulation therapies, robot-assisted rehabilitation and willpower-based training paradigms restored supraspinal control of locomotion in rodent models of severe spinal cord injury. ⋯ In four chronic paraplegic individuals, electrical neuromodulation of the spinal cord resulted in the immediate recovery of voluntary leg movements, suggesting that the therapeutic concepts developed in rodent models may also apply to humans. Here, we briefly review previous work, summarize current developments, and highlight impediments to translate these interventions into medical practice to improve functional recovery of spinal-cord-injured individuals.
-
Rehabilitation aims to decrease neurological impairments, in guiding plasticity. Electrical stimulation has been used for many years in rehabilitation treatment of neurological disabilities as a tool for neuromodulation inducing plasticity, although the mechanisms of its action are not well known. The applications vary, encompassing therapeutic and rehabilitative aims. ⋯ They may be invasive, epidural or in direct contact with neurons; they may be noninvasive, applied transcutaneously or indirectly by current vectors. The indications vary: mobility, functionality, pain as well as pharyngeal, respiratory, and perineal function. This paper aims to summarize current data on electrical neuromodulation techniques used in neurorehabilitation, their effects and their mechanisms of action.
-
Ann Phys Rehabil Med · Sep 2015
ReviewRepetitive transcranial magnetic stimulation and transcranial direct current stimulation in motor rehabilitation after stroke: an update.
Stroke is a leading cause of adult motor disability. The number of stroke survivors is increasing in industrialized countries, and despite available treatments used in rehabilitation, the recovery of motor functions after stroke is often incomplete. Studies in the 1980s showed that non-invasive brain stimulation (mainly repetitive transcranial magnetic stimulation [rTMS] and transcranial direct current stimulation [tDCS]) could modulate cortical excitability and induce plasticity in healthy humans. ⋯ The Cochrane review devoted to the effects of rTMS found 19 randomized controlled trials involving 588 patients, and that devoted to tDCS found 18 randomized controlled trials involving 450 patients. Without doubt, rTMS and tDCS contribute to physiological and pathophysiological studies in motor control. However, despite the increasing number of studies devoted to the possible therapeutic use of non-invasive brain stimulation to improve motor recovery after stroke, further studies will be necessary to specify their use in rehabilitation.
-
Locomotor behavior is controlled by specific neural circuits called central pattern generators primarily located at the lumbosacral spinal cord. These locomotor-related neuronal circuits have a high level of automaticity; that is, they can produce a "stepping" movement pattern also seen on electromyography (EMG) in the absence of supraspinal and/or peripheral afferent inputs. These circuits can be modulated by epidural spinal-cord stimulation and/or pharmacological intervention. ⋯ Our preliminary data indicate that use of the multielectrode surface array can fine-tune the control of the locomotor behavior. As well, the pcEmc strategy combined with exoskeleton technology is effective for improving motor function in paralyzed patients with SCI. The potential impact of using pcEmc to neuromodulate the spinal circuitry has significant implications for furthering our understanding of the mechanisms controlling locomotion and for rehabilitating sensorimotor function even after severe SCI.