Journal of diabetes
-
Journal of diabetes · Dec 2020
ReviewFactors leading to high morbidity and mortality of COVID-19 in patients with type 2 diabetes.
Coronavirus disease 2019 (COVID-19) is a recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus. Diabetes (mostly type 2 diabetes mellitus, T2DM) and hyperglycemia are among the major comorbidities in patients with COVID-19 leading to poor outcomes. Reports show that patients with diabetes and COVID-19 are at an increased risk for developing severe complications including acute respiratory distress syndrome, multi-organ failure, and death. ⋯ The preexisting chronic inflammation with augmented inflammatory response to the infection and the increasing viral load leads to extreme systemic immune response ("cytokine storm") that is strongly associated with increased severity of COVID-19. Based on the available evidence, it is recommended by a panel of experts that safe but stringent control of blood glucose, blood pressure, and lipids be carried out in patients with T2DM, measures that could potentially serve to decrease the severity of COVID-19 should these patients contract the viral infection. Once the infection occurs, then attention should be directed to proper glycemic control with use of insulin and frequent monitoring of blood glucose levels.
-
Journal of diabetes · Dec 2020
The impact of type 2 diabetes and its management on the prognosis of patients with severe COVID-19.
Although type 2 diabetes mellitus (T2DM) patients with coronavirus disease 2019 (COVID-19) develop a more severe condition compared to those without diabetes, the mechanisms for this are unknown. Moreover, the impact of treatment with antihyperglycemic drugs and glucocorticoids is unclear. ⋯ T2DM status aggravated the clinical condition of COVID-19 patients and increased their critical illness risk. Poor fasting blood glucose (≥ 11.1 mmol/L) and glucocorticoid treatment are associated with poor prognosis for T2DM patients with severe COVID-19.
-
Journal of diabetes · Sep 2020
ReviewCOVID-19 and comorbidities: A role for dipeptidyl peptidase 4 (DPP4) in disease severity?
The coronavirus disease 2019 (COVID-19) pandemic is caused by a novel betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), similar to SARS-CoV and Middle East respiratory syndrome (MERS-CoV), which cause acute respiratory distress syndrome and case fatalities. COVID-19 disease severity is worse in older obese patients with comorbidities such as diabetes, hypertension, cardiovascular disease, and chronic lung disease. Cell binding and entry of betacoronaviruses is via their surface spike glycoprotein; SARS-CoV binds to the metalloprotease angiotensin-converting enzyme 2 (ACE2), MERS-CoV utilizes dipeptidyl peptidase 4 (DPP4), and recent modeling of the structure of SARS-CoV-2 spike glycoprotein predicts that it can interact with human DPP4 in addition to ACE2. ⋯ This review discusses the dysregulation of DPP4 in COVID-19 comorbid conditions; DPP4 activity is higher in older individuals and increased plasma DPP4 is a predictor of the onset of metabolic syndrome. DPP4 upregulation may be a determinant of COVID-19 disease severity, which creates interest regarding the use of gliptins in management of COVID-19. Also, knowledge of the chemistry and biology of DPP4 could be utilized to develop novel therapies to block viral entry of some betacoronaviruses, potentially including SARS-CoV-2.
-
Journal of diabetes · Sep 2020
ReviewAntihyperglycemic properties of hydroxychloroquine in patients with diabetes: Risks and benefits at the time of COVID-19 pandemic.
The antimalarial drug hydroxychloroquine (HCQ) has long been used as a disease-modifying antirheumatic drug for the treatment of several inflammatory rheumatic diseases. Over the last three decades, various studies have shown that HCQ also plays a role in the regulation of glucose homeostasis. Although the mechanisms of action underlying the glucose-lowering properties of HCQ are still not entirely clear, evidence suggests that this drug may exert multifaceted effects on glucose regulation, including improvement of insulin sensitivity, increase of insulin secretion, reduction of hepatic insulin clearance, and reduction of systemic inflammation. ⋯ With regard to the COVID-19 pandemic, several medications (including HCQ) have been used as off-label drugs because of the lack of proven effective therapies. However, emerging evidence shows limited benefit from HCQ use in COVID-19 in general. The aim of this manuscript is to comprehensively summarize the current knowledge on the antihyperglycemic properties of HCQ and to critically evaluate the potential risks and benefits related to HCQ use in patients with diabetes, even in light of the current pandemic scenario.