Science translational medicine
-
CD19-specific chimeric antigen receptor (CAR)-modified T cells have antitumor activity in B cell malignancies, but factors that affect toxicity and efficacy have been difficult to define because of differences in lymphodepletion and heterogeneity of CAR-T cells administered to individual patients. We conducted a clinical trial in which CD19 CAR-T cells were manufactured from defined T cell subsets and administered in a 1:1 CD4(+)/CD8(+) ratio of CAR-T cells to 32 adults with relapsed and/or refractory B cell non-Hodgkin's lymphoma after cyclophosphamide (Cy)-based lymphodepletion chemotherapy with or without fludarabine (Flu). Patients who received Cy/Flu lymphodepletion had increased CAR-T cell expansion and persistence, and higher response rates [50% complete remission (CR), 72% overall response rate (ORR)] than patients who received Cy-based lymphodepletion without Flu (8% CR, 50% ORR). ⋯ Severe cytokine release syndrome (sCRS) and grade ≥3 neurotoxicity were observed in 13 and 28% of all patients, respectively. Serum biomarkers, one day after CAR-T cell infusion, correlated with subsequent sCRS and neurotoxicity. Immunotherapy with CD19 CAR-T cells in a defined CD4(+)/CD8(+) ratio allowed identification of correlative factors for CAR-T cell expansion, persistence, and toxicity, and facilitated optimization of lymphodepletion that improved disease response and overall and progression-free survival.