Journal of natural medicines
-
Boi and its original plant Sinomenium acutum from Japan were compared with Seifuto and its botanical origins from China in terms of their internal transcribed spacer (ITS) sequences and major chemical components. Boi, Seifuto, and their botanical origins overall showed seven variable sites in the ITS sequence and six genotypes. Japanese S. acutum and Boi had one nucleotide variation at position 593 to show two genotypes (J1 and J2) and their heterozygote (J3). ⋯ The main component in the rhizome of Seifuto was sinomenine, whereas magnoflorine was the main component in the rhizome and the climbing stem of Boi. The content of sinomenine in Seifuto was almost twice that in Boi. Although the individual content of alkaloids 1-4 differed between Boi and Seifuto, the total contents of these alkaloids were comparable between them both in the climbing stem and rhizome.
-
To investigate the pharmacokinetics of [6]-shogaol, a pungent ingredient of Zingiber officinale Roscoe, the pharmacokinetic parameters were determined by using (14)C-[6]-shogaol (labeled compound) and [6]-shogaol (non-labeled compound). When the labeled compound was orally administered to rats, the maximum plasma concentration (C (max)) and the area under the curve (AUC) of plasma radioactivity concentration increased in a dose-dependent manner. When the labeled compound was orally administered at a dose of 10 mg/kg, 20.0 + or - 1.8% of the radioactivity administered was excreted into urine, 64.0 + or - 12.9% into feces, and 0.2 + or - 0.1% into breath. ⋯ Furthermore, when the labeled compound was orally administered at a dose of 10 mg/kg, cumulative biliary radioactivity excretion over 48 h was 78.5 + or - 4.5% of the radioactivity administered, and cumulative urinary radioactivity excretion over 48 h was 11.8 + or - 2.7%, showing that about 90% of the dose administered orally was absorbed from the digestive tract and most of the fecal excretion was via biliary excretion. On the other hand, when the non-labeled compound [6]-shogaol was orally administered, the plasma concentration and biliary excretion of the unchanged form were extremely low. When these results are combined with those obtained with the labeled compound, it would suggest that [6]-shogaol is mostly metabolized in the body and excreted as metabolites.
-
To examine the effects of Panax notoginseng saponins (PNS), the main active components of Panax notoginseng, on ovariectomy-induced osteoporosis in rats. A total of 72 six-month-old female rats were randomly assigned to sham-operated group and five ovariectomized (OVX) groups: OVX with distilled water (5 ml/kg/day, p.o.), OVX with graded doses of PNS (75, 150, 300 mg/kg/day, p.o.), and OVX with nilestriol (1 mg/kg/week, p.o.). Animals were sacrificed after a 13-week treatment course. ⋯ The bone-modulating effects of PNS may be due to the increased bone formation and decreased bone resorption, as was evidenced by the elevated level of serum alkaline phosphatase and decreased level of urinary deoxypyridinoline. PNS treatment is able to enhance BMD, bone strength, and prevent the deterioration of trabecular microarchitecture without hyperplastic effect on uterus. Therefore, PNS might be a potential alternative medicine for the prevention and treatment of postmenopausal osteoporosis.