Journal of medical microbiology
-
Our objective was to analyse phenotypic and genetic data of extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae, Enterobacter cloacae, Escherichia coli and Serratia marcescens that cause infections in our hospital. Over a 3 year period, 342 randomly selected clinical Enterobacteriaceae isolates were tested for ESBL production and evaluated for the presence of the β-lactamase genes bla(SHV), bla(TEM,) bla(CTX-M) and bla(TLA-1). The antibiotic susceptibilities of these isolates were also determined, and the clonality of the isolates was assessed by PFGE. ⋯ In contrast, most ESBL-producing isolates of E. coli and S. marcescens did not have similar PFGE banding patterns and thus were not genetically similar. Enterobacteriaceae are a concern in our hospital, especially K. pneumoniae and Enterobacter cloacae. Our results confirm that the CTX-M-15 ESBL type has spread rapidly in the hospital, and thus requires careful monitoring.
-
Non-thermal (low-temperature) physical plasma is under intensive study as an alternative approach to control superficial wound and skin infections when the effectiveness of chemical agents is weak due to natural pathogen or biofilm resistance. The purpose of this study was to test the individual susceptibility of pathogenic bacteria to non-thermal argon plasma and to measure the effectiveness of plasma treatments against bacteria in biofilms and on wound surfaces. Overall, Gram-negative bacteria were more susceptible to plasma treatment than Gram-positive bacteria. ⋯ A statistically significant increase in the rate of wound closure was observed in plasma-treated animals after the third day of the course. Wound healing in plasma-treated animals slowed down after the course had been completed. Overall, the results show considerable potential for non-thermal argon plasma in eliminating pathogenic bacteria from biofilms and wound surfaces.