Injury
-
Teriparatide [PTH (1-34)] is a genetically engineered analog of human parathyroid hormone that acts as an anabolic drug by increasing activity in both osteoblasts and osteoclasts. Intermittent (once-daily) doses of teriparatide seem to stimulate osteoblast activity and therefore result in a net increase of bone formation. It is recommended for use in post-menopausal women (PMW), men with hypogonadal osteoporosis, as well as men and women with glucocorticoid-induced osteoporosis. ⋯ In the following scenarios, teriparatide might be considered in patients with osteoporosis and a fracture: (1) patients with severe osteoporosis with use of bisphosphonates for a number of years with a fracture not expected to predictably unite, e.g. atypical femur fracture or open tibia fracture, (2) in cases where an osteoporotic patient has failed fracture healing and is considering surgical treatment e.g. non-union surgery. It seems prudent to reevaluate these patients frequently and reconsider which drug class of osteoporotic drug is best for the patient. Finally, it must be stressed that we do not recommend teriparatide in osteoporotic patients that may be well treated with bisphosphonates and a fracture is expected to heal uneventfully, nor when patients with metabolically normal bone have a fracture.
-
Elderly people, due to neurological conditions and muscular atrophy, present a greater propensity to falls and thus are very susceptible to hip fractures. Other variables, such as osteoporosis, may also be related to the etiopathogenesis of hip fractures, although osteoporosis is in fact a concurrent disease, and merely a coadjutant cause. Nonetheless, osteoporosis can make fracture patterns more severe and interfere with osteosynthesis. ⋯ Furthermore, increased crystal size, increased cortical porosity, reduced osteocyte lacunar density and an increased Ca/P ratio associated with higher concentrations of Ca and P were described in hip fracture patients compared to control patients. Osteocalcin/collagen type 1 expression ratio and enzymatic cross-link content in high-density bone was found to be significantly lower in hip fractures compared to controls. In conclusion, further research in bone mineral density and associated parameters are of interest to deepen the understanding of osteoporotic hip fractures.
-
Bisphosphonates (BPs) have been in use for many years for the treatment of osteoporosis, multiple myeloma, Paget's disease, as well as a variety of other diseases in which there is reduced bone mineral density. Given that bisphosphonates inhibit bone resorption, an important stage of fracture healing; this class of compounds has been widely studied in preclinical models regarding their influence on fracture healing. In animal models, bisphosphonate treatment is associated with a larger fracture callus, coincident with a delay in remodeling from primary woven bone to lamellar bone, but there is no delay in formation of the fracture callus. ⋯ Rarely, patients with long term use of Bisphosphonates may develop an atypical fracture and delay in fracture healing has been observed. In summary, bisphosphonates appear safe for use in the setting of acute fracture management in the upper and lower extremity in humans. While much remains unknown about the effects on healing of long-term bisphosphonates, use prior to "typical" fracture, in the special case of atypical fracture, evidence suggests that bisphosphonates negatively influence healing.
-
The Injury Severity Score (ISS) is the most ubiquitous summary score derived from Abbreviated Injury Scale (AIS) data. It is frequently used to classify patients as 'major trauma' using a threshold of ISS >15. However, it is not known whether this is still appropriate, given the changes which have been made to the AIS codeset since this threshold was first used. This study aimed to identify appropriate ISS and New Injury Severity Score (NISS) thresholds for use with the 2008 AIS (AIS08) which predict mortality and in-hospital resource use comparably to ISS >15 using AIS98. ⋯ Level II evidence--diagnostic tests and criteria.
-
Review
Fracture repair: general aspects and influence of osteoporosis and anti-osteoporosis treatment.
Bone differs from other tissues in its capacity to self-repair after a fracture. The low bone mass and structural deterioration of bone associated with osteoporosis increases the risk of fragility fracture compared with healthy individuals. The intention of this article is to review the complex process of fracture repair and essential requirements for a successful fracture healing response summarized as the "diamond concept" in terms of aging and osteoporosis. ⋯ Following a fragility fracture, it seems that early start of preventive anti-osteoporotic treatment right after surgery does not delay the union of the fracture, except perhaps in the case of very rigidly fixed fracture requiring direct bone healing. There is some promising experimental and clinical evidence for possible enhancement of the bone repair process via administration of systemic agents. Further well designed studies in humans are necessary to accumulate more evidence on the positive effects and to translate this knowledge into valid therapeutic applications.