Chemico-biological interactions
-
Chem. Biol. Interact. · Dec 2005
Correlation between red blood cell acetylcholinesterase activity and neuromuscular transmission in organophosphate poisoning.
Assessment of effectiveness of oximes in severely organophosphate poisoned patients is hampered by sedation, artificial ventilation and other therapeutic measures as well as varying individual clinical courses due to, e.g. differences in type and amount of poison ingested or time elapsed before treatment starts. To evaluate oxime effects a suitable surrogate parameter would be helpful. Red blood cell acetylcholinesterase (RBC-AChE) is easily obtainable, shows a similar structure as synaptic enzyme and may be useful to reflect the AChE status at the synaptic site. ⋯ The correlation was assessed in a clinical trial with severely OP-poisoned patients who were treated with obidoxime. The investigation revealed a good correlation between both parameters and showed, that a very low RBC-AChE activity (<10% of normal) was associated with a strongly impaired NMT marker, the so called decrement-phenomenon, RBC-AChE activity between 10 and 30% by impaired NMT with the decrement-increment-phenomenon and RBC activities above 30% generally by normal muscle function. Accordingly, RBC-AChE appears to be a suitable parameter for judgment of oxime effectiveness at the neuromuscular junction, one of the most important targets for therapy where atropine is ineffective in OP-poisoning.
-
Chem. Biol. Interact. · Dec 2005
Transcriptional regulation of acetylcholinesterase-associated collagen ColQ in fast- and slow-twitch muscle fibers.
The presence of a collagenous protein (ColQ) characterizes the collagen-tailed forms of acetylcholinesterase (AChE) and butyrylcholinesterase at vertebrate neuromuscular junctions, which is tethered in the synaptic basal lamina. ColQ subunits, differing mostly by their signal sequences, are encoded by transcripts ColQ-1 and ColQ-1a, which are differentially expressed in slow- and fast-twitch muscles in mammals, respectively. Both ColQ transcripts are derived from a single COLQ gene. ⋯ After in vivo DNA transfection, pColQ-1 showed strong activity in slow-twitch muscle (e.g. soleus), while pColQ-1a was preferably expressed in fast-twitch muscle (e.g. tibialis). Mutation analysis of the ColQ promoters suggested that the muscle fiber type-specific expression pattern of ColQ transcripts was regulated by a slow upsteam regulatory element (SURE) and a fast intronic regulatory element (FIRE). These results explain the specific expression patterns of collagen-tailed AChE in slow and fast muscle fibers.