Chest
-
Review
3D Printing and 3D Slicer - Powerful Tools in Understanding and Treating Structural Lung Disease.
Recent advances in the three-dimensional (3D) printing industry have enabled clinicians to explore the use of 3D printing in preprocedural planning, biomedical tissue modeling, and direct implantable device manufacturing. Despite the increased adoption of rapid prototyping and additive manufacturing techniques in the health-care field, many physicians lack the technical skill set to use this exciting and useful technology. Additionally, the growth in the 3D printing sector brings an ever-increasing number of 3D printers and printable materials. ⋯ Additionally, we will address some of the major barriers to wider adoption of the technology in the medical field. Finally, we will provide an initial guide to 3D modeling and printing by demonstrating how to design a personalized airway prosthesis via 3D Slicer. We hope this information will reduce the barriers to use and increase clinician participation in the 3D printing health-care sector.
-
COPD is a significant public health challenge, notably set to become the third leading cause of death and fifth leading cause of chronic disability worldwide by the next decade. Skeletal muscle impairment is now recognized as a disabling, extrapulmonary consequence of COPD that is associated with reduced quality of life and premature mortality. Because COPD typically manifests in older individuals, these clinical features may overlie normal age-associated declines in muscle function and performance. ⋯ This review focuses on the perspective that mitochondrial alterations contribute to impaired locomotor muscle performance in patients with COPD by reducing oxidative capacity and thus endurance, as well as by triggering proteolysis and thus contributing to atrophy and weakness. We discuss how the potential underlying mechanisms converge on mitochondria by targeting the peroxisome proliferator-activated receptor γ-coactivator-1α signaling pathway (thereby reducing mitochondrial biogenesis and muscle oxidative capacity and potentially increasing fiber atrophy) and how taking advantage of normal muscle plasticity and mitochondrial biogenesis may reverse this pathophysiology. We propose recent therapeutic strategies aimed at increasing peroxisome proliferator-activated receptor γ-coactivator-1α levels, such as endurance training and exercise mimetic drugs, with the strong rationale for increasing mitochondrial biogenesis and function and thus improving the muscle phenotype in COPD.
-
Comparative Study
Outcomes of Nurse Practitioner-Delivered Critical Care: A Prospective Cohort Study.
Acute care nurse practitioners (ACNPs) are increasingly being employed in ICUs to offset physician shortages, but no data exist about outcomes of critically ill patients continuously cared for by ACNPs. ⋯ Outcomes are comparable for critically ill patients cared for by ACNP and resident teams.
-
Sickle cell disease (SCD), the most common genetic hemolytic anemia worldwide, affects 250,000 births annually. In the United States, SCD affects approximately 100,000 individuals, most of African descent. Hemoglobin S (HbS) results from a glutamate-to-valine mutation of the sixth codon of the β-hemoglobin allele; the homozygous genotype (HbSS) is associated with the most prevalent and severe form of the disease. ⋯ This represents a critical research need. In this review, the authors review the state-of-the-art understanding of the following pulmonary complications of SCD: (1) pulmonary hypertension; (2) venous thromboembolic disease; (3) sleep-disordered breathing; (4) asthma and recurrent wheezing; and (5) pulmonary function abnormalities. This review highlights the advances as well as the knowledge gaps in this field to update clinicians and other health care providers and to garner research interest from the medical community.
-
To determine the effect of the MUC5B promoter polymorphism (rs35705950) on the CT imaging appearance of pulmonary fibrosis. ⋯ The MUC5B promoter polymorphism identifies a pattern of fibrosis that is different from other causes of fibrosis and may respond differently to potential therapies.