ACS combinatorial science
-
ACS combinatorial science · Jun 2020
ReviewTargeting the Dimerization of the Main Protease of Coronaviruses: A Potential Broad-Spectrum Therapeutic Strategy.
A new coronavirus (CoV) caused a pandemic named COVID-19, which has become a global health care emergency in the present time. The virus is referred to as SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2) and has a genome similar (∼82%) to that of the previously known SARS-CoV (SARS coronavirus). An attractive therapeutic target for CoVs is the main protease (Mpro) or 3-chymotrypsin-like cysteine protease (3CLpro), as this enzyme plays a key role in polyprotein processing and is active in a dimeric form. ⋯ In this regard, we have compiled the literature reports highlighting the effect of mutations and N-terminal deletion of residues of SARS-CoV Mpro on its dimerization and, thus, catalytic activity. We believe that the present review will stimulate research in this less explored yet quite significant area. The effect of the COVID-19 epidemic and the possibility of future CoV outbreaks strongly emphasize the urgent need for the design and development of potent antiviral agents against CoV infections.
-
ACS combinatorial science · Jan 2016
Discovery of a Direct Ras Inhibitor by Screening a Combinatorial Library of Cell-Permeable Bicyclic Peptides.
Cyclic peptides have great potential as therapeutic agents and research tools. However, their applications against intracellular targets have been limited, because cyclic peptides are generally impermeable to the cell membrane. ⋯ Screening of the library against oncoprotein K-Ras G12V followed by hit optimization produced a moderately potent and cell-permeable K-Ras inhibitor, which physically blocks the Ras-effector interactions in vitro, inhibits the signaling events downstream of Ras in cancer cells, and induces apoptosis of the cancer cells. Our approach should be generally applicable to developing cell-permeable bicyclic peptide inhibitors against other intracellular proteins.