Brain connectivity
-
In addition to the skeleto-motor deficits, patients with Parkinson's disease (PD) frequently present with oculomotor dysfunctions such as impaired smooth pursuit and saccadic abnormalities. There is increasing evidence for an impaired cortical function to be responsible for oculomotor deficits that are associated with lack of inhibitory control; however, these pathomechanisms still remain poorly understood. By means of "task-free" resting-state functional magnetic resonance imaging (rs-fMRI), functional connectivity changes in PD within the default mode network (DMN) have been reported. ⋯ In VOG, patients and controls differed in terms of executive tests outcome, smooth pursuit eye movement, and visually guided reactive saccades but not in peak eye velocity. A significant relationship was observed between saccadic accuracy and functional connectivity strengths between MTL and PCC. These results suggest that PD-associated changes of DMN connectivity are correlated with PD-associated saccadic hypometria, in particular in the vertical direction.
-
In this functional magnetic resonance imaging study, we examined the effect of mild propofol sedation and propofol-induced unconsciousness on resting state brain connectivity, using graph analysis based on independent component analysis and a classical seed-based analysis. Contrary to previous propofol research, which mainly emphasized the importance of connectivity in the default mode network (DMN) and external control network (ECN), we focused on the salience network, thalamus, and brainstem. The importance of these brain regions in brain arousal and organization merits a more detailed examination of their connectivity response to propofol. ⋯ Brainstem regions disconnected from the DMN with unconsciousness, while the pontine tegmental area increased connectivity with the insulae during mild sedation. These findings illustrate that loss of consciousness is associated with a wide variety of decreases and increases of both cortical and subcortical connectivity. It furthermore stresses the necessity of also examining resting state connectivity in networks representing arousal, not only those associated with awareness.
-
Review Historical Article
Anatomical brain networks on the prediction of abnormal brain states.
Graph-based brain anatomical network analysis models the brain as a graph whose nodes represent structural/functional regions, whereas the links between them represent nervous fiber connections. Initial studies of brain anatomical networks using this approach were devoted to describe the key organizational principles of the normal brain, while current trends seem to be more focused on detecting network alterations associated to specific brain disorders. ⋯ This article offers an overview from early gross connectional anatomy explorations until more recent advances on anatomical brain network reconstruction approaches, with a specific focus on how the latter move toward the prediction of abnormal brain states. While anatomical graph-based predictor approaches are still at an early stage, they bear promising implications for individualized clinical diagnosis of neurological and psychiatric disorders, as well as for neurodevelopmental evaluations and subsequent assisted creation of educational strategies related to specific cognitive disorders.
-
Resting-state functional connectivity (FC) has revealed marked network dysfunction in patients with temporal lobe epilepsy (TLE) compared to healthy controls. However, the nature and the location of these changes have not been fully elucidated nor confirmed by other methodologies. We assessed the presence of hippocampal FC changes in TLE based on the low frequency residuals of task-related functional magnetic resonance imaging data after the removal of task-related activation [i.e., task-regressed functional connectivity MRI (fcMRI)]. ⋯ Consistent with the existing literature, FC reductions in TLE appear widespread with prominent reductions in the medial portion of the DMN. Our data expand the literature by demonstrating that reductions in FC may be greatest in the left hemisphere and in patients with left TLE. Overall, our findings suggest that task-regressed FC is a viable alternative to resting state and that future studies may extract similar information on network connectivity from already existing datasets.
-
The corpus callosum is the largest white matter fiber bundle connecting the two cerebral hemispheres. In this work, we investigate the effect of callosal dysgenesis on functional magnetic resonance imaging (fMRI) resting-state networks and the functional connectome. Since alternate commissural routes between the cerebral hemispheres exist, we hypothesize that bilateral cortical networks can still be maintained in partial or even complete agenesis of the corpus callosum (AgCC). ⋯ However, interhemispheric functional connectivity of precuneus, posterior cingulate cortex, and insular-opercular regions was significantly reduced in AgCC. The preserved network organization was confirmed with a connectomic analysis of the resting-state fMRI data, showing five functional modules that are largely consistent across the control and AgCC groups. Hence, the reduction or even complete absence of callosal connectivity does not affect the qualitative organization of bilateral resting-state networks or the modular organization of the functional connectome, although quantitatively reduced functional connectivity can be demonstrated by measurements within bilateral cortical hubs, supporting the hypothesis that indirect polysynaptic pathways are utilized to preserve interhemispheric temporal synchrony.