Advances in biological regulation
-
Activation of PI3K/Akt/mTOR (mechanistic target of rapamycin) signaling cascade has been shown in tumorigenesis of numerous malignancies including glioblastoma (GB). This signaling cascade is frequently upregulated due to loss of the tumor suppressor PTEN, a phosphatase that functions antagonistically to PI3K. mTOR regulates cell growth, motility, and metabolism by forming two multiprotein complexes, mTORC1 and mTORC2, which are composed of special binding partners. These complexes are sensitive to distinct stimuli. mTORC1 is sensitive to nutrients and mTORC2 is regulated via PI3K and growth factor signaling. mTORC1 regulates protein synthesis and cell growth through downstream molecules: 4E-BP1 (also called EIF4E-BP1) and S6K. ⋯ Novel ATP binding inhibitors of mTORC1 and mTORC2 suppress mTORC1 activity completely by total dephosphorylation of its downstream substrate pS6KSer235/236, while effectively suppressing mTORC2 activity, as demonstrated by complete dephosphorylation of pAKTSer473. Furthermore, proliferation and self-renewal of GB cancer stem cells are effectively targetable by these novel mTORC1 and mTORC2 inhibitors. Therefore, the effectiveness of inhibitors of mTOR complexes can be estimated by their ability to suppress both mTORC1 and 2 and their ability to impede both cell proliferation and migration.