Stem cells translational medicine
-
Regenerative technologies strive to boost innate repair processes and restitute normative impact. Deployment of regenerative principles into practice is poised to usher in a new era in health care, driving radical innovation in patient management to address the needs of an aging population challenged by escalating chronic diseases. There is urgency to design, execute, and validate viable paradigms for translating and implementing the science of regenerative medicine into tangible health benefits that provide value to stakeholders. A regenerative medicine model of care would entail scalable production and standardized application of clinical grade biotherapies supported by comprehensive supply chain capabilities that integrate sourcing and manufacturing with care delivery. Mayo Clinic has rolled out a blueprint for discovery, translation, and application of regenerative medicine therapies for accelerated adoption into the standard of care. To establish regenerative medical and surgical service lines, the Mayo Clinic model incorporates patient access, enabling platforms and delivery. Access is coordinated through a designated portal, the Regenerative Medicine Consult Service, serving to facilitate patient/provider education, procurement of biomaterials, referral to specialty services, and/or regenerative interventions, often in clinical trials. Platforms include the Regenerative Medicine Biotrust and Good Manufacturing Practice facilities for manufacture of clinical grade products for cell-based, acellular, and/or biomaterial applications. Care delivery leverages dedicated interventional suites for provision of regenerative services. Performance is tracked using a scorecard system to inform decision making. The Mayo Clinic roadmap exemplifies an integrated organization in the discovery, development, and delivery of regenerative medicine within a growing community of practice at the core of modern health care. ⋯ Regenerative medicine is at the vanguard of health care poised to offer solutions for many of today's incurable diseases. Accordingly, there is a pressing need to develop, deploy, and demonstrate a viable framework for rollout of a regenerative medicine model of care. Translation of regenerative medicine principles into practice is feasible, yet clinical validity and utility must be established to ensure approval and adoption. Standardized and scaled-up regenerative products and services across medical and surgical specialties must in turn achieve a value-added proposition, advancing intended outcome beyond current management strategies.
-
Stem Cells Transl Med · Dec 2015
A Universal and Robust Integrated Platform for the Scalable Production of Human Cardiomyocytes From Pluripotent Stem Cells.
Recent advances in the generation of cardiomyocytes (CMs) from human pluripotent stem cells (hPSCs), in conjunction with the promising outcomes from preclinical and clinical studies, have raised new hopes for cardiac cell therapy. We report the development of a scalable, robust, and integrated differentiation platform for large-scale production of hPSC-CM aggregates in a stirred suspension bioreactor as a single-unit operation. Precise modulation of the differentiation process by small molecule activation of WNT signaling, followed by inactivation of transforming growth factor-β and WNT signaling and activation of sonic hedgehog signaling in hPSCs as size-controlled aggregates led to the generation of approximately 100% beating CM spheroids containing virtually pure (∼90%) CMs in 10 days. Moreover, the developed differentiation strategy was universal, as demonstrated by testing multiple hPSC lines (5 human embryonic stem cell and 4 human inducible PSC lines) without cell sorting or selection. The produced hPSC-CMs successfully expressed canonical lineage-specific markers and showed high functionality, as demonstrated by microelectrode array and electrophysiology tests. This robust and universal platform could become a valuable tool for the mass production of functional hPSC-CMs as a prerequisite for realizing their promising potential for therapeutic and industrial applications, including drug discovery and toxicity assays. ⋯ Recent advances in the generation of cardiomyocytes (CMs) from human pluripotent stem cells (hPSCs) and the development of novel cell therapy strategies using hPSC-CMs (e.g., cardiac patches) in conjunction with promising preclinical and clinical studies, have raised new hopes for patients with end-stage cardiovascular disease, which remains the leading cause of morbidity and mortality globally. In this study, a simplified, scalable, robust, and integrated differentiation platform was developed to generate clinical grade hPSC-CMs as cell aggregates under chemically defined culture conditions. This approach resulted in approximately 100% beating CM spheroids with virtually pure (∼90%) functional cardiomyocytes in 10 days from multiple hPSC lines. This universal and robust bioprocessing platform can provide sufficient numbers of hPSC-CMs for companies developing regenerative medicine technologies to rescue, replace, and help repair damaged heart tissues and for pharmaceutical companies developing advanced biologics and drugs for regeneration of lost heart tissue using high-throughput technologies. It is believed that this technology can expedite clinical progress in these areas to achieve a meaningful impact on improving clinical outcomes, cost of care, and quality of life for those patients disabled and experiencing heart disease.