Neuropharmacology
-
We generated transgenic (Thy1alpha6) mice in which the GABA(A) receptor alpha6 subunit, whose expression is usually confined to granule cells of cerebellum and cochlear nuclei, is ectopically expressed under the control of the pan-neuronal Thy-1.2 promoter. Strong Thy1alpha6 subunit expression occurs, for example, in deep cerebellar nuclei, layer V iscocortical and hippocampal pyramidal cells and dentate granule cells. Ligand binding and protein biochemistry show that most forebrain alpha6 subunits assemble as alpha6betagamma2-type receptors, and some as alpha1alpha6betagamma2 and alpha3alpha6betagamma2 receptors. ⋯ Synaptic immunolabeling is rare. Consistent with the alpha6 subunits' extrasynaptic localization, Thy1alpha6 CA1 pyramidal neurons have a five-fold increased tonic GABA(A) receptor-mediated current compared with wild-type cells; however, the spontaneous IPSC frequency and the mIPSC amplitude in Thy1alpha6 mice decrease 37 and 30%, respectively compared with wild-type. Our results strengthen the idea that GABA(A) receptors containing alpha6 subunits can function as extrasynaptic receptors responsible for tonic inhibition and further suggest that a homeostatic mechanism might operate, whereby increased tonic inhibition causes a compensatory decrease in synaptic GABA(A) receptor responses.
-
A differential role for metabotropic glutamate receptors (mGluRs) in spinal nociception in normal animals has previously been identified. The present study examined the contribution of group I and group II mGluRs to the development and maintenance of inflammatory hyperalgesia produced by unilateral intradermal injection of carrageenan into the lower forelimb in sheep. Carrageenan (7.5 mg in 500 micro l) produced a significant bilateral reduction in forelimb mechanical withdrawal thresholds. ⋯ The magnitude of the analgesic response, assessed by the area under the response curve, was significantly greater than that produced by LCCG-I in normal animals. These data demonstrate that the development and maintenance of inflammatory hyperalgesia is dependent on activation of group I mGluRs in spinal cord. In addition, the analgesic and anti-hyperalgesic actions of group II mGluRs suggest that these receptors play a crucial role in modulating acute inflammatory hyperalgesia.
-
GluR5 receptors modulate spinal nociception, however, their role in nociceptive hypersensitivity remains unclear. Using behavioural and electrophysiological approaches, we have investigated several GluR5 ligands in acute and hyperalgesic states. Furthermore, as the GABAergic system plays a role in GluR5 mediated effects in the brain, we also analysed the interaction between GluR5 agonists and GABA(A) antagonists in the spinal cord. ⋯ We conclude that selective GluR5 kainate receptor activation inhibits spinal nociception and its sensitisation caused by ongoing peripheral nociceptive drive. GABA(A) receptors are involved in tonic inhibition of segmental responses, but contribute to their sensitisation by repetitive primary afferent stimulation. Furthermore, there is a cross-talk between the two systems, presumably due to GluR5-mediated activation of GABAergic inhibitory interneurones in the spinal cord.