Neuropharmacology
-
Comparative Study
Spinal muscarinic receptors are activated during low or high frequency TENS-induced antihyperalgesia in rats.
Transcutaneous electrical nerve stimulation (TENS) is a non-pharmacological modality used clinically to relieve pain. Central involvement of serotonin and endogenous opioids are implicated in TENS-induced analgesia. Activation of spinal cholinergic receptors is antinociceptive and these receptors interact with opioid and serotonin receptors. ⋯ Atropine, pirenzepine and 4-DAMP significantly attenuated the antihyperalgesic effects of low and high frequency TENS while mecamylamine and methoctramine had no effects, compared to saline control. The results show that TENS-induced antihyperalgesia is mediated partially by activation of spinal muscarinic receptors but not spinal nicotinic receptors. Further, the results also indicate that spinal M1 and M3 muscarinic receptor subtypes mediate the muscarinic component of TENS antihyperalgesia.
-
Comparative Study
Basal and activity-induced release of substance P from primary afferent fibres in NK1 receptor knockout mice: evidence for negative feedback.
The concept that NK1 receptors are located pre-junctionally on substance P (SP)-containing nerves, acting as autoreceptors to inhibit SP release, has been suggested, but remains a controversial issue. To further investigate the existence of this receptor on central and peripheral terminals of primary afferent fibres, NK1 receptor knockout mice and an NK1 receptor antagonist were used in nerve-attached tissue preparations. These were the isolated dorsal horn of the spinal cord with dorsal roots attached, and the hairy skin of the hind paw with attached saphenous nerve. ⋯ However, a difference in SP release evoked in the dorsal horn by electrical stimulation of the dorsal roots or capsaicin application was not observed. In contrast, antidromic electrical stimulation of the saphenous nerve caused a substantially greater release of SP in the skin of NK1(-/-) mice than in NK1(+/+) mice (P<0.05, n=5 to 6 mice/strain). These results provide evidence for the existence of NK1 autoreceptors on sensory nerves in skin, which may be relevant to the modulation of their peripheral pathophysiological effector functions.
-
In the rat subthalamic nucleus, which plays a critical role in the control of motor behaviour, specific binding of [3H]-prazosin was detected by radioligand binding to homogenates and by autoradiography in slices. [3H]-Prazosin binding to homogenates (Bmax 71 +/- 5 fmol/mg protein; Kd 0.27 +/- 0.05 nM) was competed for by alpha1-antagonists. In subthalamic nucleus slices and in the presence of 10 mM LiCl, noradrenaline (100 microM) produced a modest, but consistent, stimulation of [3H]-inositol phosphate accumulation (146 +/- 6% of basal), reversed by the alpha1-antagonist prazosin (1 microM). Extracellular single-unit recordings in slices showed that in a subpopulation (61 out of 94 cells) of rat subthalamic neurones with regular, single-spike firing pattern, noradrenaline induced a concentration-dependent increase in the firing rate (EC50 2.5 +/- 0.2 microM, maximum effect 272 +/- 33% of basal). ⋯ In four out of 11 neurones perfusion with 3 microM noradrenaline resulted in a shift from bursting to regular firing. Taken together, our results indicate that rat subthalamic neurones express alpha1-adrenoceptors responsible for noradrenaline-induced stimulation of the firing rate of a subpopulation of neurones. By modulating the spontaneous activity of STN neurones, noradrenergic pathways might have a significant role in regulating basal ganglia function and thus motor activity.
-
E-6375 (4-butoxy-2-[4-(2-cyanobenzoyl)-1-piperazinyl] pyrimidine hydrochloride) is a new intravenous general anaesthetic with an anaesthetic potency, in mice, comparable to propofol, or etomidate. Here, we examined the effect of E-6375 upon the GABAA receptor, a putative target of intravenous anaesthetic action. E-6375 reversibly enhanced GABA-evoked currents mediated by recombinant GABAA (alpha1beta2gamma2L) receptors expressed in Xenopus laevis oocytes, with little effect on NMDA- and kainate-evoked currents mediated by NR1a/NR2A and GluR1o/GluR2o glutamate receptors, respectively. ⋯ The selectivity of E-6375 was largely governed by the identity (serine or asparagine) of a single amino acid residue within the second transmembrane domain of the beta-subunit. The various in vivo actions of general anaesthetics may be mediated by GABAA receptor isoforms that have a differential distribution within the CNS. The identification of agents, such as E-6375, that discriminate between GABAA receptor subtypes may augur the development of general anaesthetics with an improved therapeutic profile.