Neuropharmacology
-
Diabetic neuropathic pain remains an unmet clinical problem and is poorly relieved by conventional analgesics. N-methyl-D-aspartate (NMDA) receptors play an important role in central sensitization in neuropathic pain. Although NMDA antagonists are highly effective in reducing neuropathic pain, these agents cause severe side effects at therapeutic doses, which limit their clinical uses. ⋯ The plasma level achieved by neramexane at 12.3, 24.6, and 49.2 mg/kg/day was 0.26 +/- 0.04, 0.50 +/- 0.05, and 1.21 +/- 0.16 microM, respectively. These data suggest that neramexane at therapeutically relevant doses attenuates diabetic neuropathic pain. Our study provides valuable information about the therapeutic potential of chronic administration of neramexane and memantine for painful diabetic neuropathy.
-
Fenobam [N-(3-chlorophenyl)-N'-(4,5-dihydro-1-methyl-4-oxo-1H-imidazole-2-yl)urea] was suggested to possess anxiolytic actions 30 years ago. Hoffmann-La Roche researchers recently reported that it is a selective and potent mGlu5 receptor antagonist, acting as a negative allosteric modulator. In the present study, we show that fenobam readily penetrates to the brain, reaching concentrations over 600 nM, clearly above the affinity for mGluR5 receptors. ⋯ Fenobam also impaired performance in both the Morris water maze and in the contextual fear conditioning test at the doses of 30 and 10 mg/kg, respectively. Prepulse inhibition, used as a model of psychomimetic activity, was not affected by fenobam at doses of up to 60 mg/kg. Our results indicate that the beneficial effects of fenobam occur in a similar dose range as the potential side-effects.