Neuropharmacology
-
Soluble amyloid beta (Aβ) oligomers are widely accepted to be neurotoxic and lead to the memory loss and neuronal death observed in Alzheimer's disease (AD). Ample evidence suggests that impairment in glutamatergic signalling is associated with AD pathology. In particular, Aβ(1-42) is thought to affect N-methyl-d-aspartate (NMDA) receptor function and abolish the induction of long-term potentiation (LTP), which is regarded to be a phenomenon relevant to memory formation. ⋯ Both compounds restored LTP in the presence of Aβ(1-42) oligomers (50 nM, fEPSPs were potentiated to 129 ± 13% and 133 ± 7% respectively). Finally, we demonstrated that slices from mice heterozygous for NR2B receptor) in the forebrain are not susceptible to the toxic effects of Aβ(1-42) oligomers but express normal LTP (138 ± 6%). These experiments demonstrate that glutamate receptor antagonists delivered at concentrations which still allow physiological activities in vitro, are able to prevent Aβ(1-42) oligomer-induced synaptic toxicity and further support the glutamatergic system as a target for the development of improved symptomatic/neuroprotective treatments for AD.
-
Intense noxious stimuli impair GABAergic inhibition in spinal dorsal horn, which has been proposed as a critical contributor to pathological pain. However, how the reduced inhibition exacerbates the transfer of nociceptive information at excitatory glutamatergic synapses is still poorly understood. The present study demonstrated that one of the striking consequences of GABAergic disinhibition was to enhance the function of N-methyl-D-aspartate subtype glutamate receptors (NMDARs), a well-characterized player in central sensitization. ⋯ When PKA inhibitor H-89 was intrathecally applied, it totally eliminated bicuculline-induced NMDARs phosphorylation, synaptic redistribution as well as pain sensitization. Importantly, the reduced inhibition also operated to enhance NMDARs functions after peripheral inflammation, because spinal injection of diazepam to rescue the inhibition in inflamed mice greatly depressed PKA phosphorylation of NR1-S897, reduced the synaptic concentration of NR1/NR2B and meanwhile, alleviated the inflammatory pain. These data suggested that removal of GABAergic inhibition allowed for PKA-mediated NMDARs phosphorylation and synaptic accumulation, thus exaggerating NMDARs-dependent nociceptive transmission and behavioral sensitization.