Neuropharmacology
-
Here we provide functional and immunocytochemical evidence supporting the presence on Nucleus Accumbens (NAc) dopaminergic terminals of cyclothiazide-sensitive, alfa-amino-3-hydroxy-5-methyl-4-isoxazolone propionate (AMPA) receptors, which activation causes Ca²⁺-dependent [³H]dopamine ([³H]DA) exocytosis. These AMPA receptors cross-talk with co-localized nicotinic receptors (nAChRs), as suggested by the finding that in vitro short-term pre-exposure of synaptosomes to 30 μM nicotine caused a significant reduction of both the 30 μM nicotine and the 100 μM AMPA-evoked [³H]DA overflow. Entrapping pep2-SVKI, a peptide known to compete for the binding of GluA2 subunit to scaffolding proteins involved in AMPA receptor endocytosis, in NAC synaptosomes prevented the nicotine-induced reduction of AMPA-mediated [³H]DA exocytosis, while pep2-SVKE, used as negative control, was inefficacious. ⋯ Western blot analysis of GluA2 immunoreactivity showed that presynaptic GluA2 proteins in NAc terminals were reduced in nicotine-pretreated synaptosomes when compared to the control. The nACh-AMPA receptor-receptor interaction was not limited to dopaminergic terminals since nicotine pre-exposure also affected the presynaptic AMPA receptors controlling hippocampal noradrenaline release, but not the presynaptic AMPA receptors controlling GABA and acetylcholine release. These observations could be relevant to the comprehension of the molecular mechanisms at the basis of nicotine rewarding.
-
Comparative Study
AM-251 and rimonabant act as direct antagonists at mu-opioid receptors: implications for opioid/cannabinoid interaction studies.
Mu-opioid and CB1-cannabinoid agonists produce analgesia; however, adverse effects limit use of drugs in both classes. Additive or synergistic effects resulting from concurrent administration of low doses of mu- and CB1-agonists may produce analgesia with fewer side effects. Synergism potentially results from interaction between mu-opioid receptors (MORs) and CB1 receptors (CB1Rs). ⋯ AM-251 and rimonabant (10 mg/kg) attenuate morphine analgesia, whereas the same dose of AM-281 produces little effect. Therefore, in addition to high CB1R affinity, AM-251 and rimonabant bind to MORs with mid-nanomolar affinity and at higher doses may affect morphine analgesia via direct antagonism at MORs. Such CB1-independent of these antagonists effects may contribute to reported inconsistencies when CB1/MOR interactions are examined via pharmacological methods in CB1-knockout versus wild-type mice.
-
Ischemic postconditioning, a series of mechanical interruptions of blood flow immediately after reperfusion, has been described in brain studies. However, hypoxic postconditioning (HPC) has never been reported in transient global cerebral ischemia (tGCI) adult rat model. The purpose of this study is to explore the effects of neuroprotection by delayed HPC against tGCI in adult rats and investigate underlying mechanisms involving the Akt/Forkhead transcription factor, class O (FoxO) and mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways. ⋯ Inhibiting phosphorylation of MEK and ERK with U0126 attenuated neuronal damage after tGCI. These results suggest that delayed HPC exerts neuroprotection against tGCI-induced injury in adult rats. The activation of Akt/FoxO and inactivation of MEK/ERK pathways by postconditioning contributed to the induction of neuroprotection against tGCI.
-
In the current study, we investigated the effect of the activation of the alpha-7 nicotinic acetylcholine receptor (α7 nAchR) on dextran sulphate sodium (DSS)-induced colitis and referred mechanical hyperalgesia in mice. Colitis was induced in CD1 male mice through the intake of 4% DSS in tap water for 7 days. Control mice received unadulterated water. ⋯ Consistent with these results, i.p. treatment with the selective α7 nAchR agonist PNU 282987 (0.1-1.0 mg/kg) reduced referred mechanical hyperalgesia at all periods of evaluation. Despite their antinociceptive effects, nicotinic agonists did not affect DSS-induced colonic damage or inflammation. Taken together, the data generated in the present study show the potential relevance of using α7 nAchR agonists to treat referred pain and discomfort associated with inflammatory bowel diseases.