Neuropharmacology
-
Cholinergic fibers from the brainstem and basal forebrain innervate the medial prefrontal cortex (mPFC) modulating neuronal activity and synaptic plasticity responses to hippocampal inputs. Here, we investigated the muscarinic and glutamatergic modulation of long-term depression (LTD) in the intact projections from CA1 to mPFC in vivo. Cortical-evoked responses were recorded in urethane-anesthetized rats for 30 min during baseline and 4 h following LTD. ⋯ Our data also indicate that NMDA receptor pre-activation is essential to the muscarinic enhancement of mPFC synaptic depression, since AP7 microinjection into the mPFC blocked the conversion of transient depression into long-lasting LTD produced by PILO. In addition, AP7 effectively blocked the long-lasting LTD induced by LFS900. Therefore, our findings suggest that the glutamatergic co-activation of prefrontal neurons is important for the effects of PILO on mPFC synaptic depression, which could play an important role in the control of executive and emotional functions.
-
Diabetes causes mitochondrial dysfunction in sensory neurons that may contribute to peripheral neuropathy. Ciliary neurotrophic factor (CNTF) promotes sensory neuron survival and axon regeneration and prevents axonal dwindling, nerve conduction deficits and thermal hypoalgesia in diabetic rats. In this study, we tested the hypothesis that CNTF protects sensory neuron function during diabetes through normalization of impaired mitochondrial bioenergetics. ⋯ Studies in mice with STZ-induced diabetes demonstrated that systemic therapy with CNTF prevented functional indices of peripheral neuropathy along with deficiencies in dorsal root ganglion (DRG) NF-κB p50 expression and DNA binding activity. DRG neurons derived from STZ-diabetic mice also exhibited deficiencies in maximal oxygen consumption rate and associated spare respiratory capacity that were corrected by exposure to CNTF for 24 h in an NF-κB-dependent manner. We propose that the ability of CNTF to enhance axon regeneration and protect peripheral nerve from structural and functional indices of diabetic peripheral neuropathy is associated with targeting of mitochondrial function, in part via NF-κB activation, and improvement of cellular bioenergetics.
-
The endocannabinoid system (ECS) may either enhance or inhibit responses to aversive stimuli, possibly caused by its modulatory activity on diverse neurotransmitters. The aim of this work was to investigate the involvement of serotonin (5-HT) and catecholamines, as well as the role of glutamatergic and GABAergic cannabinoid type 1 (CB(1)) receptor, in responses to the antidepressant-like doses of the CB(1) receptor agonist Δ(9)-tetrahydrocannabinol (THC) and the antagonist rimonabant in the forced swim test (FST). Mice received acute injections of low doses of THC (0.1 or 0.5 mg/kg) or high dose of rimonabant (3 or 10 mg/kg) after treatment with the 5-HT synthesis inhibitor pCPA (100 mg/kg, 4 days), the 5-HT(1A) receptor antagonist WAY100635 (1 mg/kg, acute) or the non-selective blocker of catecholamine synthesis, AMPT (20 mg/kg, acute). ⋯ The effect of THC persisted in mutant mice with CB(1) receptor inactivation in GABAergic neurons, whereas rimonabant effects were alleviated in these mutants. Thus, employing both pharmacological and genetic tools, we could show that the ECS regulates stress responses by influencing GABAergic, glutamatergic and monoaminergic transmission. The antidepressant-like action of THC depends on serotonergic neurotransmission, whereas rimonabant effects are mediated by CB(1) receptor on GABAergic neurons and by catecholamine signaling.
-
Transient receptor potential ankyrin 1 (TRPA1) is a nonselective cation channel important in setting nociceptive threshold. It is expressed in nociceptive C-fibers and in non-neuronal cells involved in pro-inflammatory mediators' release. We asked whether TRPA1 contributes to carrageenan-induced hyperalgesia in rats, and if so, whether this contribution is mediated by mechanisms involved in inflammation such as cytokine release and neutrophil migration and/or by a direct sensitization of the primary afferent nociceptors. ⋯ However, it did not affect either carrageenan-induced cytokines expression or neutrophil migration. The neuronal TRPA1 gene silencing induced by intrathecal pre-treatment with antisense oligodoexynucleotide completely prevented carrageenan-induced hyperalgesia over 24 h and significantly reduced TRPA1 expression in the dorsal root ganglia cells (L5-6), which was not affected by carrageenan treatment. We conclude that TRPA1 plays an important role in the development and maintenance of carrageenan-induced inflammatory hyperalgesia by directly contributing to nociceptor excitability.
-
Agonists and positive allosteric modulators (PAMs) of α7 nicotinic acetylcholine receptors (nAChRs) are currently being considered as novel therapeutic approaches for managing cognitive deficits in schizophrenia and Alzheimer's disease. Though α7 agonists were recently found to possess antinociceptive and anti-inflammatory properties in rodent models of chronic neuropathic pain and inflammation, the effects of α7 nAChRs PAMs on chronic pain and inflammation remain largely unknown. The present study investigated whether PAMs, by increasing endogenous cholinergic tone, potentiate α7 nAChRs function to attenuate inflammatory and chronic neuropathic pain in mice. ⋯ Systemic administration of the α7 nAChR antagonist MLA reversed PNU-120596's effects, suggesting the involvement of central and peripheral α7 nAChRs. Furthermore, PNU-120596 enhanced an ineffective dose of selective agonist PHA-543613 to produce anti-allodynic effects in the CCI model. Our results indicate that the type II α7 nAChRs PAM PNU-120596, but not the type I α7 nAChRs PAM NS1738, shows significant anti-edematous and anti-allodynic effects in inflammatory and CCI pain models in mice.