Neuropharmacology
-
ITH33/IQM9.21 is a novel compound belonging to a family of glutamic acid derivatives, synthesized under the hypothesis implying that multitarget ligands may provide more efficient neuroprotection than single-targeted compounds. In rat hippocampal slices, oxygen plus glucose deprivation followed by re-oxygenation (OGD/Reox) elicited 42% cell death. At 1 μM, ITH33/IQM9.21 mitigated this damage by 26% and by 55% at 3 μM. ⋯ In a photothrombotic model of stroke in mice, intraperitoneal injection of ITH33/IQM9.21 at 1.25 mg/kg, 2.5 mg/kg or 5 mg/kg given before and during 2 days after stroke induction, reduced infarct volume by over 45%. Furthermore, when the compound was administered 1 h post-stroke, a similar effect was observed. In conclusion, these in vitro and in vivo results suggest that ITH33/IQM9.21 exhibits neuroprotective effects to protect the vulnerable neurons at the ischemic penumbra by an effective and multifaceted mechanism, mediated by reduction of Ca(2+) overload, providing mitochondrial protection and antioxidant actions.
-
Despite the potential therapeutic relevance of group II metabotropic glutamate (mGlu) receptors, there has been a lack of pharmacological tools for separating the roles of mGlu2 and mGlu3 receptor subtypes. LY541850 was claimed from human mGlu receptors expressed in non-neuronal cells to be a selective orthosteric mGlu2 agonist and mGlu3 antagonist. We have verified this pharmacological profile of LY541850 in hippocampal slices. ⋯ Systemic administration of LY541850 to wild-type mice, reduced the increase in locomotor activity following both phencyclidine and amphetamine administration. These data support the hypothesis that mGlu2 receptors mediate the antipsychotic effects of mixed group II agonists. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
-
Absence epilepsy is generated by the cortico-thalamo-cortical network, which undergoes a finely tuned regulation by metabotropic glutamate (mGlu) receptors. We have shown previously that potentiation of mGlu1 receptors reduces spontaneous occurring spike and wave discharges (SWDs) in the WAG/Rij rat model of absence epilepsy, whereas activation of mGlu2/3 and mGlu4 receptors produces the opposite effect. Here, we have extended the study to mGlu5 receptors, which are known to be highly expressed within the cortico-thalamo-cortical network. ⋯ The effect of VU0360172 was prevented by co-treatment with MTEP. These findings suggest that changes in mGlu5 receptors might lie at the core of the absence-seizure prone phenotype of WAG/Rij rats, and that mGlu5 receptor enhancers are potential candidates to the treatment of absence epilepsy. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
-
Transient receptor potential ankyrin 1 (TRPA1) is a nonselective cation channel important in setting nociceptive threshold. It is expressed in nociceptive C-fibers and in non-neuronal cells involved in pro-inflammatory mediators' release. We asked whether TRPA1 contributes to carrageenan-induced hyperalgesia in rats, and if so, whether this contribution is mediated by mechanisms involved in inflammation such as cytokine release and neutrophil migration and/or by a direct sensitization of the primary afferent nociceptors. ⋯ However, it did not affect either carrageenan-induced cytokines expression or neutrophil migration. The neuronal TRPA1 gene silencing induced by intrathecal pre-treatment with antisense oligodoexynucleotide completely prevented carrageenan-induced hyperalgesia over 24 h and significantly reduced TRPA1 expression in the dorsal root ganglia cells (L5-6), which was not affected by carrageenan treatment. We conclude that TRPA1 plays an important role in the development and maintenance of carrageenan-induced inflammatory hyperalgesia by directly contributing to nociceptor excitability.
-
Agonists and positive allosteric modulators (PAMs) of α7 nicotinic acetylcholine receptors (nAChRs) are currently being considered as novel therapeutic approaches for managing cognitive deficits in schizophrenia and Alzheimer's disease. Though α7 agonists were recently found to possess antinociceptive and anti-inflammatory properties in rodent models of chronic neuropathic pain and inflammation, the effects of α7 nAChRs PAMs on chronic pain and inflammation remain largely unknown. The present study investigated whether PAMs, by increasing endogenous cholinergic tone, potentiate α7 nAChRs function to attenuate inflammatory and chronic neuropathic pain in mice. ⋯ Systemic administration of the α7 nAChR antagonist MLA reversed PNU-120596's effects, suggesting the involvement of central and peripheral α7 nAChRs. Furthermore, PNU-120596 enhanced an ineffective dose of selective agonist PHA-543613 to produce anti-allodynic effects in the CCI model. Our results indicate that the type II α7 nAChRs PAM PNU-120596, but not the type I α7 nAChRs PAM NS1738, shows significant anti-edematous and anti-allodynic effects in inflammatory and CCI pain models in mice.