Neuropharmacology
-
Soluble amyloid beta (Aβ) oligomers are widely accepted to be neurotoxic and lead to the memory loss and neuronal death observed in Alzheimer's disease (AD). Ample evidence suggests that impairment in glutamatergic signalling is associated with AD pathology. In particular, Aβ(1-42) is thought to affect N-methyl-d-aspartate (NMDA) receptor function and abolish the induction of long-term potentiation (LTP), which is regarded to be a phenomenon relevant to memory formation. ⋯ Both compounds restored LTP in the presence of Aβ(1-42) oligomers (50 nM, fEPSPs were potentiated to 129 ± 13% and 133 ± 7% respectively). Finally, we demonstrated that slices from mice heterozygous for NR2B receptor) in the forebrain are not susceptible to the toxic effects of Aβ(1-42) oligomers but express normal LTP (138 ± 6%). These experiments demonstrate that glutamate receptor antagonists delivered at concentrations which still allow physiological activities in vitro, are able to prevent Aβ(1-42) oligomer-induced synaptic toxicity and further support the glutamatergic system as a target for the development of improved symptomatic/neuroprotective treatments for AD.
-
Intense noxious stimuli impair GABAergic inhibition in spinal dorsal horn, which has been proposed as a critical contributor to pathological pain. However, how the reduced inhibition exacerbates the transfer of nociceptive information at excitatory glutamatergic synapses is still poorly understood. The present study demonstrated that one of the striking consequences of GABAergic disinhibition was to enhance the function of N-methyl-D-aspartate subtype glutamate receptors (NMDARs), a well-characterized player in central sensitization. ⋯ When PKA inhibitor H-89 was intrathecally applied, it totally eliminated bicuculline-induced NMDARs phosphorylation, synaptic redistribution as well as pain sensitization. Importantly, the reduced inhibition also operated to enhance NMDARs functions after peripheral inflammation, because spinal injection of diazepam to rescue the inhibition in inflamed mice greatly depressed PKA phosphorylation of NR1-S897, reduced the synaptic concentration of NR1/NR2B and meanwhile, alleviated the inflammatory pain. These data suggested that removal of GABAergic inhibition allowed for PKA-mediated NMDARs phosphorylation and synaptic accumulation, thus exaggerating NMDARs-dependent nociceptive transmission and behavioral sensitization.
-
Spinal cord injury induces maladaptive synaptic transmission in the somatosensory system that results in chronic central neuropathic pain. Recent literature suggests that glial-neuronal interactions are important modulators in synaptic transmission following spinal cord injury. Neuronal hyperexcitability is one of the predominant phenomenon caused by maladaptive synaptic transmission via altered glial-neuronal interactions after spinal cord injury. ⋯ However, hyperexcitable neurons and glial activation after spinal cord injury disrupts the balance of chloride ions, glutamate and GABA distribution in the spinal dorsal horn and results in chronic neuropathic pain. In this review, we address spinal cord injury induced mechanisms in hypofunction of GABAergic tone that results in chronic central neuropathic pain. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.
-
Sharp waves and ripples (SWRs) are a basic endogenous network activity of the hippocampus. Growing evidence from in vivo studies suggests that this activity plays a crucial role in the process of memory consolidation. Generation of SWR activity requires an intricate interaction between pyramidal cells and specific classes of GABAergic interneurons. ⋯ Most of the opposite drug effects on SWRs were also observed at higher concentrations. The present finding demonstrates a crucial involvement of the α5GABA(A)Rs in the SWR activity suggesting that distinct facets of the GABA(A)R-mediated transmission are implicated in particular features of the SWRs activity. In addition, the present results are consistent with the known opposite effects of the two drugs on memory performance.
-
The volatile anesthetics enhance GABAergic inhibitory transmission at synaptic and extrasynaptic sites at central neurons. In the present study, we investigated the effects of three volatile anesthetics (isoflurane, enflurane and sevoflurane) on synaptic and extrasynaptic GABA(A) receptor responses using mechanically dissociated rat hippocampal CA1 neurons in which functional native nerve endings (boutons) were retained. The extrasynaptic GABA(A) receptors were activated by exogenous GABA application while synaptic ones were assessed by miniature and evoked inhibitory postsynaptic currents (mIPSCs and eIPSCs, respectively). ⋯ For GABAergic eIPSCs, both isoflurane and enflurane decreased the evoked response amplitude and increased the failure rate (Rf), while sevoflurane decreased the amplitude without affecting Rf. These results suggest that isoflurane and enflurane at the clinically relevant concentrations predominantly act on GABAergic presynaptic nerve endings to decrease action potential dependent GABA release. It was concluded that these anesthetics have heterogeneous effects on mIPSCs and eIPSCs with different modulation of synaptic and extrasynaptic GABA(A) receptors.