JAMA neurology
-
Several innovative disease-modifying treatments (DMTs) for relapsing-remitting multiple sclerosis have been licensed recently or are in late-stage development. The molecular targets of several of these DMTs are well defined. All affect at least 1 of 4 properties, namely (1) trafficking, (2) survival, (3) function, or (4) proliferation. ⋯ In this article, we focus primarily on the safety of DMTs in the context of understanding their pharmacological characteristics, including molecular targets, mechanism of action, chemical structure, and metabolism. While understanding mechanisms underlying DMT toxicities is incomplete, it is important to further develop this knowledge to minimize risk to patients and to ensure future therapies have the most advantageous benefit-risk profiles. Recognizing the individual classes of DMTs described here may be valuable when considering use of such agents sequentially or possibly in combination.
-
The increasing use of continuous electroencephalography (EEG) monitoring in the intensive care unit has led to recognition of new EEG patterns that are of unclear or unknown significance. ⋯ Lateralized rhythmic delta activity in critically ill patients has a similar clinical significance as lateralized periodic discharges. It reflects the presence of a focal lesion and is associated with a high risk of acute seizures, especially nonconvulsive.
-
Reversible cerebral vasoconstriction syndrome (RCVS) is a clinical-angiographic syndrome characterized by recurrent thunderclap headaches and reversible segmental multifocal cerebral artery narrowing. More than 30% of patients with RCVS develop subarachnoid hemorrhage (SAH). Patients with RCVS with SAH (RCVS-SAH) are often misdiagnosed as having potentially ominous conditions such as aneurysmal SAH (aSAH) or cryptogenic "angiogram-negative" SAH (cSAH) owing to overlapping clinical and imaging features. ⋯ We identified important clinical and imaging differences between RCVS-SAH, aSAH, and cSAH that may be useful for improving diagnostic accuracy, clinical management, and resource utilization.
-
Despite the apparent absence of external signs of consciousness, a significant small proportion of patients with disorders of consciousness can respond to commands by willfully modulating their brain activity, even respond to yes or no questions, by performing mental imagery tasks. However, little is known about the mental life of such responsive patients, for example, with regard to whether they can have coherent thoughts or selectively maintain attention to specific events in their environment. The ability to selectively pay attention would provide evidence of a patient's preserved cognition and a method for brain-based communication, thus far untested with functional magnetic resonance imaging in this patient group. ⋯ To our knowledge, we show for the first time with functional magnetic resonance imaging that behaviorally nonresponsive patients can use selective auditory attention to convey their ability to follow commands and communicate. One patient in a minimally conscious state was able to use attention to establish functional communication in the scanner, despite his inability to produce any communication responses in repeated bedside examinations. More important, 1 patient, who had been in a vegetative state for 12 years before the scanning and subsequent to it, was able to use attention to correctly communicate answers to several binary questions. The technique may be useful in establishing basic communication with patients who appear unresponsive to bedside examinations and cannot respond with existing neuroimaging methods.