Journal of motor behavior
-
Journal of motor behavior · Mar 2009
Saccadic trajectories receive online correction: evidence for a feedback-based system of oculomotor control.
Although a considerable amount of research has investigated the planning and production of saccadic eye movements, it remains unclear whether (a) central planning processes prior to movement onset largely determine these eye movements or (b) they receive online correction during the actual trajectory. To investigate this issue, the authors measured the spatial position of the eye at specific kinematic markers during saccadic movements (i.e., peak acceleration, peak velocity, peak deceleration, saccade endpoint). ⋯ In Experiment 2, the authors examined the online control of saccades made from stored target information after delays of 500, 1,500, and 3,500 ms. Findings evince a robust and consistent feedback-based system of online oculomotor control during saccadic eye movements.