European journal of pharmacology
-
Dipyrone injected intraperitoneally (i.p.) or subplantarly into the mouse paw caused dose-related antinociception against the early and the late phases of formalin-induced licking, with mean ID50 values of 154.5 and 263.7 micromol/kg, and 2.6 and 1.2 micromol/paw, respectively. Given either by intracerebroventricular (i.c.v.) or by intrathecal (i.t.) routes, dipyrone produced a similar inhibition of both phases of the formalin-induced licking, with mean ID50 values of 0.4 and 1.3 micromol/site, and 0.4 and 0.9 micromol/site against the early and the late phase of the formalin response, respectively. Dipyrone, given by i.p., subplantar, i.t. or i.c.v. routes, caused dose-related antinociception of capsaicin-induced licking. ⋯ It is concluded that dipyrone produces peripheral, spinal and supraspinal antinociception when assessed on formalin and capsaicin-induced pain as well as in glutamate-induced hyperalgesia in mice. Dipyrone antinociception seems unlikely to involve an interaction with the L-arginine-nitric oxide pathway, serotonin system, activation of Gi protein sensitive to pertussis toxin. interaction of ATP-sensitive K+ channels, GABA(B) receptors, or the release of endogenous glucocorticoids. However, a modulatory effect on glutamate-induced hyperalgesia and, to a lesser extent, an interaction with glutamate binding sites, seems to account for its analgesic action.
-
Neuropeptide FF (Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-NH2) and the octadecapeptide neuropeptide AF (Ala-Gly-Glu-Gly-Leu-Ser-Ser-Pro-Phe-Trp-Ser-Leu-Ala-Ala-Pro-Gln-Arg-Phe -NH2) were isolated from bovine brain, and were initially characterized as anti-opioid peptides. They can oppose the acute effects of opioids and an increase in their brain concentrations may be responsible for the development of tolerance and dependence to opioids. Numerous experiments suggest a possible neuromodulatory role for neuropeptide FF. ⋯ In young mice, (1DMe)Y8Famide (D. Tyr-Leu-(NMe)Phe-Gln-Pro-Gln-Arg-Phe-NH2), a neuropeptide FF analog, increases delta-opioid receptor-mediated analgesia. These findings indicate that neuropeptide FF constitutes a neuromodulatory neuronal system interacting with opioid systems, and should be taken into account as a participant of the homeostatic process controlling the transmission of nociceptive information.