European journal of pharmacology
-
Dipyridamole is a nucleoside transport inhibitor and a non-selective phosphodiesterase inhibitor. However, the mechanisms by which dipyridamole exerts its anti-inflammatory effects are not completely understood. In the present study, we investigated the role of mitogen-activated kinase phosphatase-1 (MKP-1) in dipyridamole's anti-inflammatory effects. ⋯ Knockdown of MKP-1 by transfecting MKP-1 siRNA or inhibition of MKP-1 by the specific inhibitor, triptolide, significantly reduced the inhibitory effects of dipyridamole on COX-2 expression induced by LPS. Taken together, these data suggest that dipyridamole exerts its anti-inflammatory effect via activation of MKP-1, which dephosphorylates and inactivates p38 MAPK. Inactivation of p38 MAPK in turn inhibits IKK-beta activation and subsequently the NF-kappaB signaling pathway that mediates LPS-induced cyclooxygenase-2 expression in RAW 264.7 cells.
-
The effect of aminoguanidine, an inducible nitric oxide synthase (iNOS) inhibitor, on morphine-induced tolerance and dependence in mice was investigated in this study. Acute administration of aminoguanidine (20 mg/kg, p.o.) did not affect the antinociceptive effect of morphine (10 mg/kg, s.c.) as measured by the hot plate test. Repeated administration of aminoguanidine along with morphine attenuated the development of tolerance to the antinociceptive effect of morphine. ⋯ Similarly, co-administration of aminoguanidine inhibited naloxone-induced NO overproduction, but it did not inhibit naloxone-induced elevation of brain glutamate level in morphine-dependent mice. The effect of aminoguanidine on naloxone-induced NO overproduction was potentiated by concurrent administration of dizocilpine or l-NAME and antagonized by concurrent administration of l-arginine. These results provide evidence that blockade of NO overproduction, the consequence of NMDA receptor activation, by aminoguanidine, via inhibition of iNOS, can attenuate the development of morphine tolerance and dependence.
-
The purpose of the present study was to determine antipsychotic doses that achieve 80% striatal dopamine D2-receptor occupancy for haloperidol, risperidone and olanzapine in rats. Wistar rats were treated with normal saline vehicle (controls), haloperidol (0.25 and 0.5 mg/kg/day), risperidone (3, 5 and 6 mg/kg/day) and olanzapine (5 and 10 mg/kg/day) for 7 days via osmotic minipumps. Striatal and cerebellar tissue were collected and in vivo dopamine D2-receptor occupancies were determined using 3H-raclopride. The doses required to achieve dopamine D2-receptor occupancy of 80% in 11- and 24-week old rats were: haloperidol 0.25 mg/kg/day, risperidone 5 mg/kg/day and olanzapine 10 mg/kg/day.
-
Propofol (2,6-diisopropylphenol) is a general anesthetic possessing a neuroprotective action against oxidative stress produced by H2O2. H2O2 induces an exposure of phosphatidylserine on outer surface of cell membranes, resulting in change in membrane phospholipid arrangement, in rat thymocytes. Since propofol is highly lipophilic, the agent is presumed to interact with membrane lipids and hence to modify the cell vulnerability to H2O2. ⋯ Propofol at clinically relevant concentrations (10-30 microM) facilitated the process of cell death induced by H2O2 in rat thymocytes. However, propofol protected rat brain neurons against the oxidative stress induced by H2O2 under same experimental condition. Therefore, the action of propofol may be dependent on the type of cells.