European journal of pharmacology
-
The analgesic and anti-hyperalgesic effects of cannabinoid- and vanilloid-like compounds, plus the fatty acid amide hydrolase (FAAH) inhibitor Cyclohexylcarbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB597), and acetaminophen, were evaluated in the phenyl-p-quinone (PPQ) pain model, using different routes of administration in combination with opioid and cannabinoid receptor antagonists. All the compounds tested produced analgesic effects. Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and (R)-(+)-arachidonyl-1'-hydroxy-2'-propylamide ((R)-methanandamide) were active by three routes of administration: i.p., s.c. and, p.o. ⋯ None of the cannabinoid or opioid receptor antagonists tested blocked the compounds evaluated, with two exceptions: the antinociceptive effects of Delta(9)-THC and URB597 were completely blocked by SR141716A, a cannabinoid CB(1) receptor antagonist. Western immunoassays performed using three opioid receptor antibodies, a cannabinoid CB(1) receptor antibody and a transient receptor potential vanilloid type 1(TRPV(1)) receptor antibody, yielded no change in receptor protein levels after short-term arvanil, (R)-methanandamide or Delta(9)-THC administration. These data suggest that all the compounds tested, except Delta(9)-THC and URB597, produced analgesia via a non-cannabinoid CB(1), non-cannabinoid CB(2) pain pathway not yet identified.
-
The combined administration of low doses of opiates with non-steroidal anti-inflammatory drugs can produce additive or supra-additive analgesic effects while reducing unwanted side effects. We have recently reported that co-administration of morphine with dipyrone (metamizol) produces analgesic potentiation both in naïve and in morphine-tolerant rats. The purpose of this work was to determine the role of opioids on the acute potentiation observed between morphine and dipyrone i.v. in the rat tail flick test. ⋯ When naloxone was given after analgesics, it dose-dependently blocked the effects of morphine alone and in combination with dipyrone but with different potency in each case. As to dipyrone, naloxone delayed the time to antinociceptive peak effect. Taken together, these results support the notion that endogenous opioids are involved in the analgesic potentiation observed with the combination of morphine plus dipyrone.
-
Previous studies have shown that the extracts obtained from Phyllanthus amarus, and some of the lignans isolated from it, exhibit pronounced antiinflammatory properties. In the present study, we have assessed whether the antiinflammatory actions of these lignans can be mediated by interaction with platelet activating factor (PAF) receptor or interference with the action of this lipid. The local administration of nirtetralin, phyltetralin or niranthin (30 nmol/paw), similar to WEB2170 (a PAF receptor antagonist, 30 nmol/paw), significantly inhibited PAF-induced paw oedema formation in mice. ⋯ Moreover, in the rat model of PAF-induced allodynia, both niranthin (30 nmol/paw) and WEB2170 (30 nmol/paw) treatment significantly inhibited PAF-induced allodynia. In addition, niranthin had a rapid onset and long-lasting antiallodynic action when compared with WEB2170. Collectively, the present findings suggest that niranthin exhibits antiinflammatory and antiallodynic actions which are probably mediated through its direct antagonistic action on the PAF receptor binding sites.
-
A diaryl ether derivative, (6-(4-{[(3-methylbutyl)amino]methyl}phenoxy)nicotinamide, was prepared and investigated for its biochemical properties at cloned opioid receptors and its pharmacological effects on animal feeding. The compound displaced [(3)H]DAMGO binding of human mu-opioid receptor, [(3)H]U-69593 of human kappa-opioid receptor, and [(3)H]DPDPE of human delta-opioid receptor with IC(50) values of 0.5+/-0.2 nM, 1.4+/-0.2 nM, and 71+/-15 nM, respectively. ⋯ Importantly, the anorectic efficacy of the compound was mostly diminished in mice deficient in the mu-opioid receptor. Our results suggest an important role for the mu-opioid receptor subtype in animal feeding regulation and support the development of mu-selective antagonists as potential agents for treating human obesity.