European journal of pharmacology
-
Ghrelin, the natural ligand of the growth hormone secretagogue receptor (ghrelin receptor), is an orexigenic gut hormone with prokinetic action in the upper gastrointestinal tract. Previously we have shown in a rodent model of postoperative ileus that the synthetic ghrelin receptor agonist TZP-101 prevents the delay in gastric emptying and improves small intestinal transit. The goal of the present study was to investigate whether TZP-101 affects colonic transit and food intake in rats with postoperative ileus. ⋯ TZP-101 (0.03-1 mg/kg) dose-dependently decreased the time to first bowel movement and increased fecal pellet output measured at 12 h and 24 h post-surgery compared to the vehicle. The administration of TZP-101 was not associated with a significant alteration in food intake. In conclusion, this study provides the first experimental evidence that a novel ghrelin receptor agonist improves large bowel function in rats with postoperative ileus, suggesting that TZP-101 may be useful in the clinic to accelerate upper gastrointestinal transit and to shorten the time to the first bowel movement following surgery.
-
The natural product (-) epigallocatechin-3-gallate (EGCG) is the major polyphenolic constituent found in green tea. Dorsal root ganglion neurons are primary sensory neurons, and express tetrodotoxin-sensitive and tetrodotoxin-resistant Na(+) currents, which are both actively involved in the generation and propagation of nociceptive signals. Effects of EGCG on tetrodotoxin-sensitive and tetrodotoxin-resistant Na(+) currents in rat dorsal root ganglion neurons were investigated using the whole-cell variation of the patch-clamp techniques. ⋯ Thus, EGCG appears to bind to resting Na(+) channels to inhibit them. EGCG slowed the recovery of tetrodotoxin-sensitive Na(+) current from inactivation. The property of EGCG to inhibit sensory Na(+) currents can be utilized to develop an analgesic agent.
-
Delta opioid receptor agonists are under development for a variety of clinical applications, and some findings in rats raise the possibility that agents with this mechanism have abuse liability. The present study assessed the effects of the non-peptidic delta opioid agonist SNC80 in an assay of intracranial self-stimulation (ICSS) in rats. ICSS was examined at multiple stimulation frequencies to permit generation of frequency-response rate curves and evaluation of curve shifts produced by experimental manipulations. ⋯ ICSS frequency-rate curves were also shifted by two non-pharmacological manipulations (reductions in stimulus intensity and increases in response requirement). Thus, SNC80 failed to facilitate or attenuate ICSS-maintained responding under conditions in which other pharmacological and non-pharmacological manipulations were effective. These results suggest that non-peptidic delta opioid receptor agonists have negligible abuse-related effects in rats.