European journal of pharmacology
-
Comparative Study
Involvement of dopamine D1/D2 receptors on harmane-induced amnesia in the step-down passive avoidance test.
Ingestion of harmane and other alkaloids derived from plant Peganum harmala has been shown to elicit profound behavioural and toxic effects in humans, including hallucinations, excitation, feelings of elation, and euphoria. These alkaloids in the high doses can cause a toxic syndrome characterized by tremors and convulsions. Harmane has also been shown to act on a variety of receptor systems in the mammalian brain, including those for serotonin, dopamine and benzodiazepines. ⋯ In contrast, SCH23390 (0.05 and 0.1 mg/kg) or sulpiride (25 and 50 mg/kg) pre-test administration fully reversed HA-induced impairment of memory consolidation. Finally, neither D1 nor D2 receptor blockade affected exploratory behaviors in the hole-board paradigm. Altogether, these findings strongly suggest an involvement of D1 and D2 receptors modulation in the HA-induced impairment of memory consolidation.
-
Comparative Study
Spinal mechanism of standard analgesics: evaluation using mouse models of allodynia.
Spinal neurotransmission plays an important role in the perception of pain signaling. In the present study, we investigated the spinal anti-nociceptive mechanism of current standard analgesics in mouse models of tactile allodynia induced by intrathecal administration of N-methyl-D-aspartic acid (NMDA), prostaglandin E2 (PGE2), and bicuculline. NMDA-induced allodynia is induced by postsynaptic NMDA receptor activation, while PGE2-induced allodynia is triggered by the enhancement of presynaptic glutamate release via EP1 receptor activation. ⋯ These results taken together suggest that ziconotide, mexiletine, and duloxetine suppress spinal hyperactivity via the presynaptic site mechanism. In contrast, pregabalin could suppress via the downstream step during spinal hyperactivation such as postsynaptic NMDA activation or dysfunction of GABAergic control in addition to presynaptic mechanism. In conclusion, present findings provide implication that the spinal anti-nociceptive mechanistic site of pregabalin is different from that of ziconotide, mexiletine, and duloxetine, and pregabalin could have a broader anti-nociceptive mechanism other than N-type calcium channel blockade.
-
We investigated antinociceptive activity of botulinum toxin type A (BTX-A) in a model of diabetic neuropathic pain in rats. Male Wistar rats were made diabetic by a single intraperitoneal injection of streptozotocin (80mg/kg). Sensitivity to mechanical and thermal stimuli was measured with the paw-pressure and hot-plate test, respectively. ⋯ When applied intrathecally, BTX-A (1U/kg) reduced diabetic hyperalgesia within 24h supporting the assumption of retrograde axonal transport of BTX-A from the peripheral site of injection to central nervous system. The results presented here demonstrate the long-lasting pain reduction after single BTX-A injection in the animals with diabetic neuropathy. The bilateral pain reduction after unilateral toxin application and the effectiveness of lower dose with the faster onset after the intrathecal injection suggest the involvement of the central nervous system in the antinociceptive action of BTX-A in painful diabetic neuropathy.