European journal of pharmacology
-
Comparative Study
Evaluation of milnacipran, in comparison with amitriptyline, on cold and mechanical allodynia in a rat model of neuropathic pain.
Milnacipran, a serotonin/norepinephrine reuptake inhibitor (SNRI), has shown efficacy against several chronic pain conditions, including fibromyalgia. Here, we evaluated, in rats, its anti-allodynic effects following acute or sub-chronic treatment in a model of neuropathic pain (chronic constriction injury, CCI, of the sciatic nerve). Amitriptyline, a tricyclic antidepressant active pre-clinically and clinically against neuropathic pains, was added as a comparison compound. ⋯ Acute amitriptyline (10mg/kgi.p.) was efficacious against mechanical, but less so against cold allodynia; under sub-chronic conditions, it was only active against mechanical allodynia. These data show that milnacipran is as efficacious as the reference compound amitriptyline in a pre-clinical model of injury-induced neuropathy, and demonstrate for the first time that it is active acutely and sub-chronically against cold allodynia. They also suggest that milnacipran has the potential to alleviate allodynia associated with nerve compression-induced neuropathic pain in the clinic (for example following discal hernia, avulsion or cancer-induced tissue damage).
-
Recently, we reported that intracerebroventricularly (i.c.v.) administered (±)-epibatidine (a non-selective agonist of nicotinic acetylcholine receptors) elevates plasma noradrenaline and adrenaline through brain nicotinic acetylcholine receptor-mediated mechanisms in rats. In the present study, we characterized the receptors involved in these responses using selective agonists and antagonists of nicotinic acetylcholine receptor subtypes in anesthetized rats. (±)-Epibatidine (5 and 10nmol/animal, i.c.v.) and (-)-nicotine (250 and 500nmol/animal, i.c.v.) both elevated plasma noradrenaline and adrenaline (adrenaline>noradrenaline) but the former was more efficient than the latter. The (±)-epibatidine (5nmol/animal, i.c.v.)-induced elevation of plasma catecholamines was reduced by dihydro-β-erythroidine (a selective antagonist of α4β2 nicotinic acetylcholine receptors) (100 and 300nmol/animal, i.c.v.), while methyllycaconitine (a selective antagonist of α7 nicotinic acetylcholine receptors) (100 and 300nmol/animal, i.c.v.) had no effect on the (±)-epibatidine-induced responses. ⋯ Furthermore, the RJR-2403 (5μmol/animal, i.c.v.)-induced responses were abolished by acute bilateral adrenalectomy. Immunohistochemical procedures demonstrated the expression of α4 and β2 nicotinic acetylcholine receptor subunits on the spinally projecting hypothalamic paraventricular neurons. Taken together, brain α4β2 nicotinic acetylcholine receptors seem to be involved in the secretion of noradrenaline and adrenaline from adrenal medulla in rats.
-
Oxidative stress is a major mechanism underlying the pathogenesis of cardiovascular disease. Herein we investigate the protective effects of ghrelin in H(2)O(2)-induced apoptosis of H9c2 cells, as well as the possible molecular mechanisms involved. To study apoptosis, the cells were assessed by morphologic examination, MTS assay, Annexin V-propidium iodide dual staining and TUNEL analysis. ⋯ In summary, ghrelin protects H9c2 cells from oxidative stress-induced apoptosis through downregulation of Bax expression, caspase-9 activation and NF-κB phosphorylation, and upregulation of Bcl-2 expression. Caspase-3 activation was also reduced in a dose-dependent manner. These data suggest that ghrelin might protect against cardiovascular disease by protecting the mitochondria.